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EXECUTIVE SUMMARY 

Problem Statement 
The purpose of this project is to advance our understanding of Texas Air Quality 

(AQ) by utilizing satellite observations and the new advances in biogenic emissions 
modeling to improve biogenic emission estimates used in Texas State Implementation 
Plan (SIP) modeling activities.  

One of the challenges in understanding Texas air quality has been the uncertainties 
in estimating the biogenic hydrocarbon emissions.  Biogenic volatile organic 
compounds (BVOCs) play a critical role in atmospheric chemistry, particularly in ozone 
and particulate matter (PM) formation.  In southeast Texas, BVOCs (mostly as isoprene) 
are the dominant summertime source of reactive hydrocarbon.  Despite significant 
efforts by the State of Texas in improving BVOC estimates, the errors in emission 
inventories remain a concern.  This is partly due to the diversity of the land use/land 
cover (LU/LC) over southeast Texas coupled with a complex weather pattern, and partly 
due to the fact that isoprene is highly reactive and relating atmospheric observations of 
isoprene to the emissions source (vegetation) relies on many meteorological factors 
that control the emissions, chemistry, and atmospheric transport. 

BVOC emissions depend on Photosynthetically Active Radiation (PAR) reaching the 
canopy and temperature.  However, the treatment of temperature and PAR is not 
uniform across emission models and still poses a problem when evaluating the 
emission inventories.  Recent studies (e.g., Guenther et al., 2012) show that the largest 
source of uncertainty in BVOC estimates is the model solar radiation estimates and that 
using satellite-based PAR would be preferable.  Emissions from soils also remain as one 
of the poorly quantified sources of nitrogen oxides (NOx) in most air quality models. 
Soils can be the largest source of NOx in rural regions where low-NOx conditions make 
ozone production efficiency especially high, contributing to background ozone levels.  

Summary of the Project 
This project specifically addressed two priority areas; namely improving biogenic 

emission estimates and improving the simulation of clouds in air quality models. In 
particular, a new satellite-based PAR estimate, retrieved from the Geostationary 
Operational Environmental Satellites (GOES) visible imager, for Texas was produced, 
evaluated, and used for BVOC estimates. The study episodes included selected periods 
of summer 2006 and September 2013. The 2013 period coincides with the Deriving 
Information on Surface Conditions from COlumn and VERtically Resolved Observations 
Relevant to Air Quality (Discover-AQ) Texas campaign. Also, a new soil NOx scheme, the 
Berkeley-Dalhousie Soil NOx Parameterization (BDSNP), which provides more 
mechanistic representation of how emissions respond to nitrogen deposition, fertilizer 
application, and changing meteorology, was incorporated into the Community 
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Multiscale Air Quality (CMAQ) model. BDSNP replaced the default Yienger and Levy 
1995 (YL95) algorithm and was tested during the same periods. Furthermore, BDSNP 
was modified to be used as a stand-alone tool for estimating soil nitrogen monoxide 
(NO) emissions in any air quality modeling practice without conducting the atmospheric 
chemistry modeling. Stand-alone BDSNP along with a User’s Manual will accompany 
this report. 

 
The new satellite-based PAR product went through several iterations to fine tune 

the retrieval algorithm. The final product was evaluated against surface pyranometer 
observations from the Surface Radiation Budget Network (SURFRAD), the Soil Climate 
Analysis Network (SCAN), as well as Texas local broadband radiation monitoring 
stations for August 2006 and August-September 2013. The new PAR product was also 
compared against another satellite-based PAR product generated by the University of 
Maryland (UMD) (which is now discontinued) for August 2006. SURFRAD is operated by 
National Oceanic and Atmospheric Administration (NOAA) and is the only available 
direct continuous measurement of PAR at seven sites nationwide. SCAN is operated by 
the US Department of Agriculture and has continuous solar radiation measurements at 
more than 100 stations located in 40 states. In this project, 40 sites from the SCAN 
network, 7 sites from the SURFRAD network, and 47 sites from local Texas network 
were chosen to do performance evaluation of the satellite insolation/PAR retrieval 
products. 

 
The new UAH PAR product was in good agreement with the UMD product. UAH 

product generally exhibited a small positive bias with respect to surface observations, 
while the UMD product showed a negative bias. However, both satellite retrieval 
products substantially outperformed Weather Research and Forecasting (WRF) model 
simulations. Compared to surface observations, correlation coefficients for satellite 
products were R=0.96~0.97 versus R=0.93 for the model. Satellite products also had 
smaller normalized mean error (NME) of 20.7%~20.1% compared to NME=35.5% for 
WRF. The UMD retrieval underestimated PAR with a normalized mean bias (NMB) of  
-12.4% while the University of Alabama in Huntsville (UAH) retrieval overestimated PAR 
with NMB of 10.2%. 

 
Cloud assimilation in the Weather Research and Forecasting (WRF) model 

significantly reduced the normalized mean bias with respect to surface observations. 
NMB was reduced from 22.2% for control simulation to 8.9% for WRF with cloud 
assimilation. Additional evaluation of the results over 47 Texas Commission on 
Environmental Quality (TCEQ) sites (Broadband Radiation Monitoring networks) also 
indicated that cloud assimilation was able to significantly reduce the over-prediction by 
WRF. This result shows that WRF with cloud assimilation significantly improved the 
location and timing of clouds over Texas. 
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By using the new satellite-based PAR in the Model of Emissions of Gases and 
Aerosols from Nature (MEGAN), emission estimates indicated that the highest emission 
regions for isoprene in Texas are East Texas (2754 tons/day), North Central Texas (2036 
tons/day), and Edwards Plateau (1199 tons/day).  For terpenes, the highest emission 
regions are East Texas (1011 tons/day), Trans-Pecos (615 tons/day), and North Central 
Texas (562 tons/day). The results indicate that using GOES satellite retrievals on 
average reduced isoprene emission estimates by 20% and terpene emission estimates 
by 5% during August-September 2013 compared to the control case. In some regions 
these differences were as high as 29%. The emission algorithm for estimating terpenes 
in MEGAN is more impacted by the surface temperature than by PAR. The lowest 
emission estimates for terpenes over Texas were observed on August 15 and 
September 20 under overcast conditions. 

 
Overall, the estimated isoprene emissions (for control case) by MEGAN resulted in 

simulated concentrations being 2-3 times higher than the observed values. Using 
satellite-based PAR reduced the emissions by about 30%. However, this reduction was 
not enough to correct the large model bias. The model was also unable to explain the 
observed diurnal variation of isoprene.  The model results for isoprene in this project 
are consistent with findings from other AQRP investigations (e.g., AECOM project 
testing the sensitivity of different mechanisms to changes in BVOC emission estimates, 
or the University of Texas at Austin (UT Austin) project testing the impact of different 
land use/land cover on BVOC emission estimates). This suggests that the 2011 global 
BVOC emission factors in the current MEGAN release (v2.10), at least for isoprene, may 
have high uncertainty over Texas. Alex Guenther’s group has been contacted with 
respect to this issue. 

 
With respect to the other component of this project addressing soil NOx emission 

estimates, soil emission rates estimated by BDSNP module were consistently higher 
than the estimates by YL95 algorithm. The spatial patterns for the two algorithms were 
also quite different. YL95 estimated high NO emissions around Houston, while for 
BDSNP the highest emissions occurred near the state boundary between Texas, 
Louisiana and Arkansas. This contrast may be due to the combined contributions from 
different soil biome types, fertilizer implementations, and the different response curve 
for soil temperature and moisture in the two soil NO schemes.  BDSNP estimated 674 
moles/s over the East Texas region. This estimate is about 2.3 times higher than the 
corresponding YL95. But for South Texas, YL95 estimates were about 3 times higher 
than BDSNP (34.8 moles/s for YL95 versus 12.9 moles/s for BDSNP). Overall, the 
estimates by BDSNP were about 21% higher than YL95 over Texas. The stand-alone 
BDSNP module along with the user’s manual accompanies this final report. 

 
A series of CMAQ simulations was also performed to evaluate the impact of 

emission and meteorological changes on air quality predictions. The base case used the 
MEGAN outputs derived by default WRF simulation, the case marked “analytical” in this 
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report used the MEGAN outputs derived by WRF simulation with cloud assimilations, 
and the case named “UAHPAR” used the MEGAN outputs derived by satellite PAR 
retrievals and the soil NO emission from BDSNP scheme. The preliminary results from 
these simulations do not show a significant difference in ozone predictions. Compared 
to observations from 38 evaluation sites over Texas the correlation coefficients were 
around 0.75-0.76. The base case overestimated ozone concentration by 2-3%, which is 
consistent with previous modeling studies (Song et al., 2008; Kota et al., 2015). By using 
the cloud assimilation in WRF, the ozone performance was marginally better, 
decreasing the mean bias from 2.8% to 2.4%, the root mean square error (RMSE) from 
14.5 ppbV to 14.2 ppbV, and the NMB from 18.2% to 17.0%. Model performed better 
over the Dallas-Fort Worth metroplex (DFW) region with correlation coefficients of 
0.75-0.77 and NME of 28.9%-30.6%. On average, the model underestimated mean 
ozone over Austin, DFW, East Texas and El Paso regions while overestimating mean 
ozone over Corpus Christi, HGB and San Antonio regions. The ozone predictions over 
Corpus Christi exhibited the highest NMB in all three simulations (105-111%). 

 
Due to the large bias in biogenic VOC emission estimates by MEGAN, even after a 

30% reduction in BVOC emissions (resulted from using satellite data) most of the 
modeling domain over east Texas was saturated with VOC and remained sensitive to 
NOx. Therefore, the CMAQ simulations used in this study did not show a substantial 
improvement in ozone prediction over east Texas. These simulations should be 
repeated using a biogenic emissions model that better represent clear sky emission 
estimates.
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1. INTRODUCTION  
This project was in response to the call by the State of Texas Air Quality Research Program 

(AQRP) seeking studies to support Texas Air Quality by utilizing the data from the recent 
DISCOVER-AQ field campaign. This work specifically addressed two priority areas; namely 
improving biogenic emission estimates and improving the simulation of clouds in air quality 
models.  The project also contributes to several other priority areas as the improvements in 
radiation field not only impacts the biogenic emissions but also improves the overall 
photochemical simulation and leads to a better understanding of ozone and PM formation. The 
project devised a new algorithm to derive photosynthetically active radiation (PAR) from 
geostationary satellite observations to be used in biogenic emission estimates. The project also 
employed a new soil NO emission scheme in an air quality model. 

 
As stated in the AQRP 2012 State of the Science report, biogenic volatile organic 

compounds (BVOCs) play a critical role in formation of ozone and secondary organic aerosols in 
east Texas.  Previous studies have shown that isoprene is the dominant BVOC in southeast 
Texas.  However, due to high reactivity of isoprene, indirect evaluations of emission estimates 
through comparing the simulated isoprene concentration with measurements have proven to 
be a challenging task.  In this project, satellite observations that directly impact photochemical 
activity as well as BVOC emissions were assimilated and thereby created a simulated 
atmosphere that is more compatible with the measurements during DISCOVER-AQ.  

 
The University of Alabama in Huntsville (UAH) currently generates a set of products from 

the Geostationary Operational Environmental Satellite (GOES) that includes surface incident 
short-wave radiation as well as cloud albedo and cloud top temperature.  Under this activity, 
UAH also started producing satellite-based PAR retrievals that are needed in the estimation of 
biogenic hydrocarbon emissions.  Satellite-derived PAR was evaluated against previous satellite-
based products as well as surface observations during Texas Discover-AQ campaign.  
Furthermore, the new PAR retrievals were used in the Model of Emissions of Gases and 
Aerosols from Nature (MEGAN) to generate BVOC emissions.  Also under this activity, Berkeley-
Dalhousie Soil NOx Parameterization (BDSNP) was implemented into the Community Multiscale 
Air Quality (CMAQ) model to replace the default Yienger and Levy 1995 (YL95) algorithm.  
BDSNP provides a more mechanistic representation of how emissions respond to nitrogen 
deposition, fertilizer application, and changing meteorology.  A series of sensitivity simulations 
were performed and evaluated against Discover-AQ observations to test the impact of satellite-
derived PAR and the new soil NOx emission model on air quality simulations. 

 
The Weather Research and Forecasting (WRF) model and CMAQ modeling system were 

used for air quality simulations.  WRF simulations took advantage of improved cloud simulation 
by applying a technique developed at UAH under a previous TCEQ funded project (TCEQ Grant 
No. 582-12-10111). The technique uses GOES cloud observations to dynamically correct cloud 
fields in WRF. 
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1.1. Definition of Problem  
One of the challenges in understanding Texas air quality has been the uncertainties in 

estimating the biogenic hydrocarbon emissions (Allen et al., AQRP State of the Science 2012 
report).  BVOCs play a critical role in atmospheric chemistry, particularly in ozone and 
particulate matter (PM) formation.  In southeast Texas, BVOCs (mostly as isoprene) are the 
dominant summertime source of reactive hydrocarbon (Wiedinmyer et al., 2001).  Despite 
significant efforts by the State of Texas in improving BVOC estimates, the errors in emissions 
inventories remain a concern.  This is partly due to the diversity of the land use/land cover 
(LU/LC) over southeast Texas coupled with a complex weather pattern (Song et al., 2008), and 
partly due to the fact that isoprene is highly reactive and relating atmospheric observations of 
isoprene to the emissions source (vegetation) relies on many meteorological factors that 
control the emission, chemistry, and atmospheric transport. 

 
BVOC estimates depend on LU/LC, the amount of Photosynthetically Active Radiation (PAR), 

and temperature.  There have been many efforts in developing high resolution LU/LC data sets 
to better represent the diversity of vegetation over the State of Texas (Wiedinmyer et al., 2001; 
Byun et al., 2005).  However, the treatment of temperature and PAR is not uniform across 
emissions models and still presents a problem when evaluating the inventories.  Guenther et 
al., 2012, argued that the largest source of uncertainty in BVOC estimates is the model solar 
radiation estimates and that using satellite-based PAR would be preferable. 

 
Warneke et al., 2010, compared several BVOC emission models and showed that they agree 

within a factor of two.  This was partly due to the differences in estimating the impact of light 
and temperature on emissions.  Among the models used in their study, MEGAN (Guenther et 
al., 2006, 2012) produced higher estimates compared to measurements.  Indirect evaluations of 
MEGAN by using satellite observation of formaldehyde also indicated that MEGAN over-
estimates isoprene emissions (Palmer et al., 2006; Miller et al., 2008).  But contrary to the 
above findings, a model study by Muller et al., 2008, showed that MEGAN under-estimated 
isoprene flux over the Harvard forest site.  Karl et al., 2007, also found MEGAN under-predicted 
isoprene fluxes when compared to the flux estimates derived from aircraft measurements. 

 
This goes to show the difficulty of evaluating the estimated inventory.  This difficulty is 

mostly due to the high reactivity of isoprene and the need to have a reasonable representation 
of the physical atmosphere when comparing modeled concentrations of isoprene (or related 
compounds) to the observations.  The emissions model estimate of isoprene is highly 
dependent on providing the correct PAR and temperature.  But, relating the observed isoprene 
concentration (or derived flux) to the emissions inventory also depends on the atmospheric 
conditions that are regulated by radiation and temperature. 

 
Song et al., 2008, demonstrated this difficulty when they compare modeled and observed 

isoprene concentrations in southeast Texas. They noted that the vertical gradient of isoprene is 
highly influenced by the effectiveness of boundary layer mixing.  Due to high reactivity of 
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isoprene, less efficient mixing in the model allows for higher surface concentration of isoprene 
and lower concentrations aloft.  Given that the surface heating is a key factor in creating 
efficient mixing and increased isoprene emissions, it is crucial to correctly specify the surface 
incident radiation in such studies.  In fact, their results signified the importance of meteorology 
when evaluating BVOC emissions.  

 
Therefore, to be able to use the measurements to improve the emissions inventory, it is 

imperative to recreate the best model representation of the atmospheric condition during the 
observations.  The work presented here is an attempt to achieve this objective by using 
geostationary satellite observations to retrieve PAR for direct use in the biogenic emissions 
model and by improving model simulated clouds, surface incident radiation, and temperature 
fields used in BVOC estimates. 

 
Emissions from soils also remain one of the most poorly quantified sources of NOx in most 

air quality models. Soils can be the largest source of NOx in rural regions where low-NOx 
conditions make ozone production efficiency especially high, contributing to background ozone 
levels. A new soil NOx scheme has been developed by University of California at Berkeley (UC-
Berkeley) and Dalhousie University (Hudman et al., 2012), which provides a more mechanistic 
representation of how emissions respond to nitrogen deposition, fertilizer application, and 
changing meteorology.  Previous studies (Hudman et al., 2010; Hudman et al., 2012) have 
shown that the new scheme more than doubles soil NOx emission estimates in many regions 
and greatly increases their episodic and interannual variability.  

 

1.2. Current Study 
In the current study, an attempt was made to use GOES Imager visible data to produce PAR 

and to quantify the impact of observed PAR on biogenic emission estimates and thereby on 
ozone predictions. After several iterations, a parametrization was devised to produce PAR from 
the GOES Imager visible band. The PAR products were evaluated against surface observations 
over Texas and also against satellite-based PAR previously generated by the University of 
Maryland (UMD) for 2006.  PAR products were also compared with model estimates to quantify 
model errors.  In this study, WRF was used for meteorological modeling, MEGAN for biogenic 
emission estimates, and CMAQ for air quality simulations. 

 
For biogenic emission estimates, MEGAN was used to generate emissions for different input 

parameters. Also, the UC-Berkeley and Dalhousie University Soil NOx Parameterization (BDSNP) 
was adapted for soil NO estimates. WRF-CMAQ simulations for August-September 2013 
(Discover-AQ period) were performed to test model sensitivity to these inputs. 

 
In the following chapters detailed description of these efforts will be presented. 
 



 

 4 

2. PHOTOSYNTHETICALLY ACTIVE RADIATION (PAR) 
The uncertainties in estimating biogenic hydrocarbon emissions have been a major concern 

in regulatory air quality applications (Allen et al., 2012).  Models have considerable difficulties 
in creating clouds in the right place and at the right time compared to observed clouds.  This in 
turn significantly impacts model PAR estimates and thereby the emission estimates of BVOCs.  
Therefore, a meaningful evaluation of the biogenic emissions model relies on incorporating the 
observed radiation field in PAR estimates. Thus, to be able to use the measurements to improve 
the emissions inventory, geostationary satellite observations were used to retrieve PAR for 
direct use in the biogenic emissions model. The following describes the technique used for 
retrieving PAR from satellite observation, as well as the evaluation of the data product. 

 

2.1. APPROACH 
Currently, University of Alabama in Huntsville collaborates with the Infrared Measurements 

and Water Vapor Studies Group (IR group) at the National Aeronautics and Space 
Administration (NASA)/ Marshall Space Flight Center (MSFC) to generate and archive several 
GOES derived products including cloud albedo, surface albedo and surface insolation for the 
use in meteorological and air quality models (Haines et al., 2003).  Over the years, these 
products have been evaluated and used in many air quality studies (Pour-Biazar et al., 2007; 
Mackaro et al., 2011; McNider et al., 1998; Haines et al., 2003). The algorithm used for the 
retrieval of albedo and surface insolation is the implementation of the method developed by 
Gautier et al. (1980) and complemented by new improvements in subsequent studies (Diak and 
Gautier, 1983; personal communications with George Diak). 

 

PAR is defined as: 
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Where, λ is the wavelength, h is the Planck constant, and c is the speed of light. 
 
Thus, in principal insolation can be scaled to produce PAR.  Meaning that a conversion 

factor (CF) can be defined to convert insolation to PAR: 
 
    

Insolation
PARCF =       (2) 

 
Frouin and Pinker, 1995 and Pinker and Laszlo, 1992, documented the dependency of the 

conversion factor on several relevant atmospheric parameters such as water vapor, total 
overhead ozone, optical depth (representing aerosol/cloud impact), and zenith angle.  The 
largest variations are caused by water vapor, optical depth, and solar zenith angle (Figure 1). 
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Figure 1.  Variation of PAR conversion factor with respect to solar zenith angle, optical depth, and water 
vapor (adapted from Frouin and Pinker, 1995). 

 
 
This variation is mostly due to the difference in the impact of direct and diffused light.  

Meaning that in the presence of water vapor and aerosols, a modest increase in diffused light 
increases the conversion factor when the sun is overhead.  However, one must note that the 
largest increase in CF is when the insolation is drastically reduced (for optical depths greater 
than 10-15).  This means that in the presence of opaque clouds, the sizeable reduction in 
surface incident radiation will offset such marginal increases in CF. Therefore, the practical 
variation of conversion factor hovers around 0.5.  In fact many of the models used in 
agricultural applications use a CF of 0.5. In its default configuration, MEGAN also uses CF=0.5 
when model estimates of solar radiation are used. 

 
The approach here is to construct a simple parameterization for calculating a variable 

conversion factor from the current insolation product at UAH that encapsulates the impact of 
environmental variables on PAR.  In this approach, CF is defined as a function of optical depth 
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and zenith angle based on the data offered in Pinker and Laszlo (1992) and Frouin and Pinker 
(1995) and as described above.  After several iterations, a suitable functional form was devised 
for this purpose. The following relationship takes into account the impact of optical depth and 
zenith angle on conversion factor: 

 

( ) τ(Z)..Zfactorand

CfactorWhere
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Insolation
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−
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−=
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In Equation 3, pth (OD)Optical De =t , Cfactor represents the impact of cloud attenuation, 

and Zfactor represents the impact of zenith angle on CF.  This relationship yields the rapid 
growth of the conversion factor for small optical depths (t<5) due to the impact of diffused 
sunlight (to reflect the impact of aerosol loading and transparent clouds) and approaches a 
steady rate for thick clouds.  The conversion factor gradually increases as the cloud opaqueness 
increases. 

 
Optical depth then is estimated from satellite-derived cloud albedo.  Based on Stephens 

1978 and Joseph 1976 (implemented in Regional Acid Deposition Model (RADM), 
Comprehensive Air Quality Model with Extensions (CAMx) and CMAQ) we arrive at the 
following parameterization: 
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Figure 2 demonstrates how the functional form of the conversion factor performs as a 

function of optical depth for two different zenith angles as presented in the study of Frouin and 
Pinker, 1995 (see Figure 1 in their paper). The functional form of conversion factor seems to be 
fitting the data well and is used to convert insolation to PAR. 
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Figure 2. Conversion factor as a function of optical depth for two different zenith angles as presented in 

Figure 1. The insert is from Frouin and Pinker, 1995. 

2.2. Bias Correction for Insolation Product 
Since the PAR product is based on satellite insolation retrievals, any error in the insolation 

retrieval carries over to the PAR product. The current insolation retrieval at UAH uses a 
constant correction factor when accounting for the impact of precipitable water on insolation. 
Due to the large spatial variation of precipitable water over the continental United States 
(CONUS) from east to west, using a constant correction factor could be under-estimating 
insolation in the west and over-estimating insolation in the eastern U.S. Initial evaluation of PAR 
product also revealed a systematic bias for clear-sky satellite-based insolation against surface 
pyranometer observations.  

 
Figure 3 shows the progression of insolation over-estimations from west to east. The figure 

demonstrates paired pyranometer observations from Soil Climate Analysis Network (SCAN) 
sites versus GOES insolation retrievals for several locations representing western, central and 
eastern United States for September 2013. The red dots and the corresponding best linear fit 
for the data indicated by the red line, show the scatter plot for a SCAN site in Virginia. The blue 
dots and the corresponding blue line are for the SCAN sites in Iowa, Tennessee, and Kansas. The 
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green dots and the corresponding green line exhibit the scatter plot for Nebraska, Wisconsin, 
and Colorado. As demonstrated in the figure, the bias reduces as we move from east to west 
(similar evaluation specific to Texas is presented in the next section). 

 

 
 

Figure 3. Scatter plots and the corresponding best linear fit showing GOES insolation retrievals versus 
pyranometer observations from Soil Analysis Climate Network (SCAN) for the month of 
September 2013. 

 
While the large positive bias for Virginia station could be dismissed as an anomaly, the 

overall trend showing the progression of bias from west to east cannot be ignored. Examining 
the retrievals for a longer period during 2013 and the summer of 2006 also exhibited a similar 
pattern. The evaluation of insolation product against Surface Radiation Budget Network 
(SURFRAD) observations also confirmed the existence of a small bias over eastern U.S. While 
the use of constant precipitable water in the insolation retrieval algorithm could partly explain 
this bias, there are other factors in the retrieval algorithm (e.g., the construction of a composite 
image for surface albedo calculation) that need to be examined. Since revisiting the retrieval 
algorithm (something that UAH is currently addressing) was a time consuming effort, to deliver 
an acceptable PAR product for this project, it was decided to perform a bias correction to the 
insolation retrievals. 
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To improve the data, a simple bias correction (based on the best linear fit as compared to 

pyranometer) was devised and applied to the insolation data before retrieving satellite-based 
PAR. Figure 4 shows the GOES insolation as compared to SCAN pyranometer data before and 
after applying bias correction. While there is still some scatter in the data, the overall pattern 
shows a good correlation between pyranometer and GOES retrieval after bias correction. 

 
As evident in the formulation for conversion factor (Equation 3), the spatial variation of PAR 

is very similar to the spatial pattern of insolation. The geographical areas with large reduction in 
insolation due to cloud cover, also exhibit smaller PAR values. Only in the areas with shallow 
transparent cloud cover is there a difference. Figure 5 shows a snap shot of GOES observed 
insolation and PAR at 19:45 GMT. PAR is produced in units of W/m^2 and micro-mol/m^2/s. As 
evident in the figure, the areas with insolation less than 200 W/m2 (east/northeast part of the 
domain, due to cloud cover), also exhibit lower PAR values of less than 100 W/m2 (about 50% of 
insolation). However, in the areas with smaller reduction in insolation (which is an indication of 
more transparent clouds) the corresponding PAR values are in excess of 50%. 
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Figure 4. Scatterplots showing GOES insolation retrievals against Soil Analysis Climate Network (SCAN) data 

for September 2013. The figure to the left shows the data before applying bias correction to GOES 
retrievals, and the figure to the right shows the scatter plot after applying bias correction. 
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Figure 5. A snapshot of satellite-derived insolation and PAR at 19:45 GMT, September 1, 2013. PAR is 

produced in units of W/m^2 as well as micro-mol/m^2/s. 
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3. EVALUATION OF PAR PRODUCTS 

3.1. Observations Used for PAR Evaluation 
Two networks were chosen for evaluation. One is the Surface Radiation Budget Network 

(SURFRAD) operated by NOAA (http://www.esrl.noaa.gov/gmd/grad/surfrad/), which is the 
only available direct continuous measurement of PAR at seven sites nationwide. The other is 
the Soil Climate Analysis Network (SCAN), operated by the US Department of Agriculture 
(http://www.wcc.nrcs.usda.gov/scan/), which has continuous solar radiation measurements, 
collected by pyranometers at more than 100 stations located in 40 states. In this evaluation, 40 
sites from the SCAN network and 7 sites from the SURFRAD network were chosen. The 
locations of these sites are shown in Figure 6. Detail evaluation of insolation/PAR retrieval 
products over ground observation sites in Texas is given in section 3.3. 

 

 
Figure 6. Location of SCAN and SURFRAD sites used for PAR/insolation evaluation 

 

3.2. Evaluation of PAR product before Bias Correction 
The month of September 2013 coinciding with the DISCOVER-AQ Houston period was 

chosen to evaluate the PAR retrievals by comparing with the available ground observations. The 
time series of PAR/insolation product at each evaluation site were pin-pointed at the nearest 
satellite pixel/grid (with horizontal resolution 4 km) containing the pyranometer and were 
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interpolated to the end of each hour (since the GOES data were instantaneous observations at 
45 minutes after the hour reported on GMT time). As a reference, a 12 km CONUS WRF 
simulation during September 2013 was also conducted to show the typical weather model 
radiation performance without data assimilation from the GOES satellite. 

 
Comparing the time series for observed PAR, PAR results from the WRF model simulation, 

and satellite retrievals at different SURFRAD sites show that the satellite-based PAR tends to 
systematically decrease the positive bias of the WRF model for the peak values during the 
daytime (not shown here). This was most clearly seen for periods such as Sep 17 at BND site, 
Sep 8 at DRA site, Sep 11-13 at PSU site, Sep 15-18 at SXF site, and Sep 13 at TBL site. The 
overestimation of PAR by the WRF model might be due to the incapability of its current 
cumulus physics module to resolve enough subgrid clouds, and because meteorological models 
often under-predict the amount of thin clouds.  

 
A more detailed evaluation at each SURFRAD site by widely used statistic metrics (see 

Appendix A for the definition of those metrics) indicated that the satellite-based PAR product 
shows high correlation and good agreement with ground observations with the typically R value 
of 0.97-0.98 at each site. However, on average, the satellite retrieval overestimated the PAR 
value by 18% (Mean Bias (MB): 6.6%-28%) and deviates from the observation by 15.6 W/m2.  
This over-estimation was the basis for a closer look at the insolation retrievals and the eventual 
bias correction applied to the data. The bias correction reduced the insolation by an average of 
12% and substantially improved these statistics.   

 
The satellite retrievals also outperformed WRF in simulating observations of insolation at 

SCAN network sites. On average the WRF results tend to overestimate the insolation during 
September 2013 by 36.5 W/m2 at SCAN network sites and the satellite product (before bias 
correction) decreased the bias to 23.6 W/m2.  

 
Figure 7 provides the spatial comparison of insolation performance over SCAN network 

either by WRF results or satellite retrievals (UAH product before bias correction) in term of 
normalized mean bias (NMB). The satellite-derived insolation product achieved less bias in the 
western part of United States (with NMB -10%-10%) than in the central and southeastern part 
of the country (with typical NMB ~20%). There are two SCAN sites (site 2042 at Vermont and 
site 2039 at Virginia) that had much higher bias than the others (NMB ~50%) in the current 
evaluation. This is partly due to the insolation bias as described in the previous section. 
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Figure 7. Spatial distribution of normalized mean bias at each SCAN site during September 2013 (UAH 

product before bias correction). 
 

3.3. Evaluation of PAR product after Bias Correction 
After performing bias correction as described in the section 2.2, PAR retrievals were re-

evaluated for September 2013. The new retrievals reduced the bias by about 12%. Following 
the satisfactory results from 2013 evaluation, the project moved to the second phase of the 
evaluation for the summer of 2006. Summer of 2006 was chosen for evaluation for several 
reasons. First, another satellite-based PAR product, generated and archived by the University of 
Maryland (UMD), was available for 2006 for comparison. Also, the project had access to WRF 
simulations with and without satellite cloud assimilation that could also be used for evaluation. 

 
Thus, satellite-based PAR was generated for the summer of 2006 and evaluated against 

surface observations from SCAN, SURFRAD, and TCEQ Broadband Radiation Monitoring 
networks. For quantifying the relative impact of satellite-based PAR, four cases for different 
PAR/insolation estimates were compared with surface observations: 

1. WRF control case ‘cntrl’ with basic configurations  
2. WRF cloud assimilation case ‘analytical’ with the cloud assimilation from GOES 

observations  
3. PAR satellite retrievals from University of Maryland with the resolution of 0.5 degrees 

(http://www.atmos.umd.edu/~srb/gcip/) 
4. PAR satellite retrievals from UAH with the resolution of 4 km.  

 
PAR was computed from the WRF runs by scaling ground-reaching solar radiation (RGRND) 

by 50%. The details of case arrangement, as well as data sources used in performance 
evaluation are given in Table 1. In subsequent analyses, ‘PAR_cntrl’ refers to base WRF 
simulation, ‘PAR_analytical’ refers to WRF simulation with satellite cloud assimilation, 
‘PAR_UMD’ refers to satellite-based PAR generated by UMD, and ‘PAR_UAH’ is the new PAR 
products generated in this project. 
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Table 1. Case arrangements for PAR and the observational data sources used in evaluation. 
Case Arrangement 

 1. PAR_cntrl: Base WRF simulation to provide insolation for MEGAN 

2. PAR_analytical: Base WRF + cloud assimilation from GOES to provide insolation for MEGAN 

3. PAR_UMD: Direct use PAR retrievals from UMD, other met inputs same as case 'PAR_analytical' 

4. PAR_UAH: Direct use PAR retrievals from UAH, other met inputs same as case 'PAR_analytical' 

Observational Networks  
1. NOAA SURFRAD (Surface 

Radiation) Network http://www.esrl.noaa.gov/gmd/grad/surfrad 

2. USDA SCAN (Soil Climate 
Analysis Network) http://www.wcc.nrcs.usda.gov/scan 

3. TCEQ broadband radiation 
monitoring Network http://www.tceq.state.tx.us/agency/data/air_met_data.html 

 

The four sets of PAR estimates were evaluated against observations from seven NOAA 
SURFRAD direct measurement sites (site locations are indicated with red dots in Figure 8) for 
August 2006. Since these sites represent locations from east, west, north, and southern United 
States, they are used to evaluate PAR over the continental U.S. Evaluation statistics are given in 
Table 2, and corresponding scatterplots are given in Figure 9. 

 

Overall, both satellite retrieval products substantially outperformed the two WRF 
simulations, including better correlation coefficients (R=0.96~0.97 versus R=0.93) and smaller 
simulation errors (NME=20.7%~20.1% versus NME=32.8%~35.5%). Both satellite retrievals also 
achieved much lower bias than the base WRF run, though the UMD retrieval tended to 
underestimate PAR (NMB=-12.4%) while the UAH retrieval tended to overestimate PAR 
(NMB=10.2%). Despite the different sign of the bias, the performance of the two satellite 
products by most other metrics was similar, e.g. R=0.97 for case ‘PAR_UMD’ and R=0.96 for 
case ‘PAR_UAH’; RMSE=38.5 W/m2 for case ‘PAR_UMD’ and RMSE=43.0 W/m2 for case 
‘PAR_UAH’; Mean Aggregate Gross Error (MAGE)=22.5 W/m2 and MAGE=22.0 W/m2; and 
NME=20.7 W/m2 and NME=21.0 W/m2 respectively. (Table 2).  

 

The performance of the satellite retrievals compared to the WRF runs is illustrated by the 
scatterplots in Figure 9, with the satellite cases (red and blue) clustering closer to the 1:1 ratio 
lines at all seven evaluation sites.  The UAH PAR data achieved its best performance at the FPK 
site (Fort Peck, Montana) and its worst performance at the PSU site (Penn State, Pennsylvania) 
in terms of combined highest correlation value (IA=0.98) and smallest bias (NMB=3.7%), 
although the differences in performance across sites were not dramatic (R=0.94~0.97, 
RMSE=39.0W/m2~45.4W/m2 and NME=13.4%~28.1%). The scatter plots indicate that while the 
bias correction has reduced the bias in the eastern U.S. and has substantially improved PAR 
retrievals, perhaps it has not been enough. Small positive bias (NMB=3.7%) still exists for the 
areas in the east coast. As evident from Figure 9 and statistics in Table 2, the UMD product has 
a large negative bias at FPK (NMB=-17.7%) but a small positive bias at PSU (NMB=0.7%). This 
means that the UMD product also shows the same west-east pattern seen in UAH product. As 
evident in Figure 9, the UAH PAR product exhibits less scatter than UMD product. This could be 
due to the fact that the UAH product represents a smaller footprint (4-km resolution) than the 
UMD product (.5 degree). 
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Figure 8. Three domains for WRF-MCIP simulation in this study and locations of the insolation/PAR 

evaluation sites at SURFRAD network (red) and TCEQ broadband radiation network (blue). 
 

 
Figure 9. Scatter plots showing four different hourly simulated/retrieved PAR (vertical axis) and observed 

PAR (horizontal axis) during August 2006 at 7 SURFAD sites. 
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Table 2.  Summary of statistics for PAR simulation/retrievals for different cases at 7 SURFRAD network 

sites1 

CASE SITE OBS_AVE SIM_AVE IA R RMSE MB MAGE NMB NME 

    (W/m2) (W/m2)     (W/m2) (W/m2) 
(W/m

2) (%) (%) 

  BND 92.6 119.8 0.94 0.93 68.1 27.1 38.5 29.2 41.5 

  DRA 140.8 162.1 0.99 0.99 41.6 21.4 26.0 15.2 18.5 

  FPK 109.8 130.2 0.96 0.96 56.2 24.2 32.8 22.0 29.9 

PAR_cntrl GCM 111.0 132.7 0.94 0.92 71.2 21.8 40.5 19.6 36.5 

  PSU 92.1 133.9 0.93 0.94 77.0 37.2 43.0 40.4 46.7 

  SXF 101.6 126.1 0.95 0.93 65.5 24.4 33.4 24.0 32.8 

  TBL 105.9 113.9 0.92 0.86 77.7 7.9 45.4 7.5 42.9 

  average 107.7 131.2 0.95 0.93 65.3 23.4 37.1 22.6 35.5 

  BND 92.6 107.5 0.95 0.94 58.3 14.9 34.4 16.0 37.1 

  DRA 140.8 162.0 0.99 0.99 41.3 21.3 25.8 15.2 18.4 

  FPK 109.8 121.9 0.97 0.96 49.8 16.3 29.7 14.8 27.1 

PAR_analytical GCM 111.0 124.8 0.96 0.94 61.9 13.9 36.4 12.5 32.8 

  PSU 92.1 118.1 0.94 0.93 65.4 21.8 37.0 23.6 40.2 

  SXF 101.6 119.2 0.95 0.93 60.2 17.5 32.0 17.2 31.4 

  TBL 105.9 93.7 0.89 0.81 80.7 -12.4 45.0 -11.7 42.5 

  average 107.7 121.0 0.95 0.93 59.6 13.3 34.3 12.5 32.8 

  BND 92.6 87.2 0.99 0.98 25.8 -5.4 15.3 -5.9 16.5 

  DRA 140.8 108.2 0.97 0.97 51.7 -32.2 32.5 -22.9 23.1 

  FPK 109.8 87.1 0.97 0.97 39.0 -19.4 24.8 -17.7 22.6 

PAR_UMD GCM 111.0 103.1 0.99 0.98 30.0 -7.9 16.5 -7.1 14.9 

  PSU 92.1 95.6 0.98 0.97 28.9 -0.1 15.9 0.7 17.2 

  SXF 101.6 94.3 0.98 0.96 36.5 -7.3 20.4 -7.1 20.1 

  TBL 105.9 78.5 0.94 0.95 57.2 -27.4 32.1 -25.9 30.3 

  average 107.7 93.4 0.97 0.97 38.5 -14.2 22.5 -12.4 20.7 

  BND 92.6 110.6 0.97 0.96 44.1 19.4 25.2 21.3 27.6 

  DRA 140.8 130.4 0.98 0.96 44.0 -10.0 18.8 -7.1 13.4 

  FPK 109.8 112.8 0.98 0.96 39.9 4.2 19.4 3.7 17.2 

PAR_UAH GCM 111.0 127.3 0.98 0.97 44.2 16.6 23.7 15.0 21.4 

  PSU 92.1 117.1 0.97 0.97 44.2 21.1 25.7 23.0 28.1 

  SXF 101.6 114.9 0.98 0.96 39.1 11.2 19.5 10.8 18.8 

  TBL 105.9 111.4 0.97 0.94 45.4 5.1 22.0 4.8 20.7 

  average 107.7 117.8 0.97 0.96 43.0 9.7 22.0 10.2 21.0 
Note: 1The 7 SURFRAD sites are: BND (Bondville, IL), DRA (Desert Rock, NV), FPK (Fort Peck, MT); GCM 
(Goodwin Creek, MS), PSU (Penn. State Univ., PA), SXF (Sioux Falls, SD), and TBL (Table Mountain, CO). 
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IA-index of agreement, R-correlation coefficient, RMSE-root mean square error, MB-mean bias, MAGE-
mean aggregate gross error, NMB-normalized mean bias, and NME-normalized mean error. 
 

The insolation outputs from the two WRF runs (based on the WRF variable ‘RGRND’ for 
solar radiation reaching surface) and the UAH satellite retrieval were compared for August 2006 
with 47 available broadband radiation monitoring stations over Texas (the locations are 
indicated in Figure 8 with blue dots). The solar radiation observation data are provided by 
TCEQ. Table 3 summarizes the overall model performance for insolation for the three cases. 

 
Table 3.  Summary of statistics of insolation simulation/retrievals for different cases at 47 TCEQ network 

sites. 
  OBS_AVE SIM_AVE IA R RMSE MB MAGE NMB NME 

  (W/m2) (W/m2)   (W/m2) (W/
m2) 

(W/m
2) (%) (%) 

WRF cntrl 248.6 299.8 0.95 0.91 142.3 53.9 74.7 22.2 30.7 

WRF analytical 248.6 266.8 0.95 0.91 143.9 20.3 74.9 8.9 30.7 

UAH satellite 248.6 263.6 0.96 0.96 123.2 17.3 71.8 7.5 29.5 

Note: IA-index of agreement, R-correlation coefficient, RMSE-root mean square error, MB-mean bias, 
MAGE-mean aggregate gross error, NMB-normalized mean bias, and NME-normalized mean error. 

 
Using satellite data substantially reduces the overprediction bias of the WRF control run, 

reducing NMB from 22.2% to 8.9% for the cloud-assimilated WRF run and 7.5% for the UAH 
retrieval. While cloud assimilation was able to reduce the overprediction bias in WRF, the UAH 
retrieval strongly outperformed both WRF runs in terms of error and correlation (Table 3). This 
indicates that WRF with cloud assimilation has been able to significantly improve the location 
and timing of clouds over Texas. 

 
Figure 10 provides the spatial maps of the correlation coefficient (R, upper panel) and 

normalized mean bias (NMB, lower panel) for the individual 47 TCEQ sites among the three 
different cases. In terms of correlation coefficient R, the WRF ‘cntrl’ case performs worst 
(R~0.85) near the coastal sites especially around the greater Houston area. It performs better at 
inland sites near the Dallas region(R~0.92). The cloud assimilation WRF run slightly improves 
model correlation at most of the sites. UAH satellite retrieval insolation products significantly 
improve the model correlation with the R values at inland sites approaching 1 and at the coastal 
sites mostly around 0.95. In terms of NMB, all three products performed better around Dallas 
and other inland sites than near Houston, and the satellite-based cases far outperformed the 
base WRF simulation. Cloud assimilation in WRF reduces the normalized mean bias significantly, 
but slightly improves the correlation. This could be due to an inherent problem in WRF that 
generally produces more opaque clouds. Appendix B provides the detail statistics for the 
insolation/simulation retrievals for the three different cases at each of the 47 TCEQ network 
sites for reference.  
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A much smaller NMB for the satellite product and significantly higher correlation for sites in 
eastern Texas indicate the robustness of satellite retrievals. The large difference in performance 
between base WRF simulation and satellite product with respect to radiation field in a region 
with high vegetation cover could have significant impact on BVOC emissions. 

 

 
Figure 10. Performance of WRF incoming solar radiation (RGRND) from simulation case ‘cntrl’  (left) and 

‘analytical’ (right)  as well as UAH insolation retrievals  (right) at TCEQ sites. The upper panel shows 
the correlation coefficient (R) and the lower panel shows the normalized mean bias (NMB). 

 
It should be noted that during this evaluation, Spatial Allocator was used for mapping to 

ensure that the 4km resolution UAH satellite products mapped properly to the model grid.  
Spatial Allocator (www.epa.gov/AMD/Tools/spatialAllocator.html) is a community tool and has 
an option for mapping UAH products. 

 

4. WRF SIMULATIONS WITH CLOUD ASSIMILATION (AUG-SEP 2013) 
In addition to base WRF simulations used in the preliminary evaluation of PAR and MEGAN 

BVOC estimates for 2013, additional simulations using the TCEQ State Implementation Plan 
(SIP) domain and model configurations were also performed. This was to test the impact of 
improved cloud prediction on air quality simulations. 

 
Clouds play a critical role in the production and destruction of pollutants and yet the models 

have difficulty in creating clouds in the right place and time compared to observed clouds.  This 
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is especially the case when synoptic-scale forcing is weak (e.g. Stensrud and Fritsch 1994).  
Weak synoptic-scale forcing is often associated with air pollution events.  Errors in model cloud 
not only impact radiative fluxes and subsequently surface temperature and boundary layer 
evolution, they also alter the boundary layer photochemistry, aerosol formation and recycling, 
heterogeneous chemistry, and wet deposition. 

 
Under a previous TCEQ funded project (Pour-Biazar et al., 2011), UAH has developed a 

technique to assimilate GOES cloud observations in the WRF model that dynamically adjusts 
cloud fields (Allen et al., AQRP State of the Science 2012 Report).  This technique has proven to 
improve cloud simulation in WRF.  In this project, this technique was used in WRF to test the 
sensitivity of biogenic emission estimates and air quality simulations to improved cloud 
simulations. 

 
Meteorological Model: WRF (Skamarock et al. 2008) is the meteorological model most 

widely used in CMAQ. The model is a joint undertaking of NOAA and NCAR (the National Center 
for Atmospheric Research) and is used to simulate local and synoptic scale meteorological 
conditions prevalent during the period of interest.  The WRF model is a community model. WRF 
has many capabilities pertinent to the needs of this project. These include: (1) a multiple-nest 
capability; (2) non-hydrostatic dynamics that allow the model to be used at a scale of 
approximately 4 km; (3) multi-tasking capability on shared and distributed-memory machines; 
(4) four-dimensional data assimilation (FDDA) capability, and (5) multiple physics options 
(http://www.wrf-model.org/index.php).  Required data inputs include topography and land 
cover/land use (LU/LC) data, gridded atmospheric fields of sea-level pressure, wind, 
temperature, relative humidity and geopotential height at defined pressure levels, and 
observation data including soundings and surface reports.  LU/LC is used as input directly to 
WRF to provide surface boundary conditions such as albedo, soil moisture availability, surface 
roughness and canopy height. 

 
The August and September 2013 WRF simulations were performed for three domains.  The 

extent of these domains is shown in Figure 8. Table 4 summarizes the domain configuration 
used for 2013 WRF simulations. 

 
Table 4.  WRF domain setup for 36-, 12-, and 4-km grid spacing used for UAH simulations. 

Domain 
Name 

Range (km) Number of Grid Points Cell Size (km) 
Easting Northing Easting Northing Easting Northing 

CONUS (-2916,2916) (-2304,2304) 163 129 36 36 
SouthUS (-1188,900) (-1800,-144) 175 139 12 12 

Texas (-396,468) (-1620,-468) 217 289 4 4 

 
Domain 1 is a 36 km grid covering the Continental United States (CONUS) region, domain 2 

is a nested 12 km grid covering part of the Southern United States (SouthUS) and domain 3 is a 
nested 4 km grid covering Texas.  In the following model performance for all three domains is 
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evaluated with respect to clouds and surface measurements.  The WRF configuration used for 
UAH simulations (both 2006 and 2013) is given in Table 5.   

 
Table 5.  WRF configuration for 2013 satellite cloud assimilation runs.  WRF 2006 configuration shown in 

brackets where different from 2013 configuration. 
 Domain 1 Domain 2 Domain 3 

Simulation Period August – September 2013 [August 2006] 
Horizontal Resolution 36 km 12 km 4 km 

Time Step 90 s 30 s 10 s 
Number of Vertical Levels 43 [42] 

Top Pressure of the Model 50 hPa 

Shortwave Radiation The Rapid Radiative Transfer Model for GCMs (RRTMG) [Dudhia] 
Longwave Radiation The Rapid Radiative Transfer Model for GCMs (RRTMG) [RRTM] 

Surface Layer Monin-Obukhov 
Land Surface Layer Unified Noah (4-soil layer) 

PBL Yonsei University (YSU) scheme 
Microphysics Thompson [LIN] 

Cumulus Physics Kain-Fritsch (with Ma and Tan 2009 trigger 
function) 

None 

Meteorological Input Data NAM Analysis [Eta Model Analysis] 

Analysis Nudging Yes Winds Only 
U, V Nudging Coefficient 3 x 10-4 3 x 10-4 

T Nudging Coefficient 3 x 10-4 0 
Q Nudging Coefficient 1 x 10-5 0 

Nudging within PBL Yes for U and V, No for q and T Yes for U and V 
  
The results of two different WRF simulations will be presented: the control (CNTRL) 

simulation and the GOES satellite assimilation (ASSIM) simulation. Note that ‘ASSIM’ and 
‘Analytical’ have been used interchangeably in this report. The control simulation only nudges 
in the North American Mesoscale analysis database (NAM) analysis temperature, wind, and 
mixing ratio data throughout the forecast time period, while the Assimilation simulation uses 
an analytical technique for assimilating in GOES satellite observations through the nudging 
field.  Note that for domain 3, only winds were nudged into the model as indicated in Table 5. 
The main reason for this is that the nudging of analysis winds into WRF has been shown to 
reduce the positive wind bias that the WRF model produces (Pour-Biazar et al., 2014).  This also 
leads to smaller errors in the wind speed and direction. 
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4.1. WRF Model Performance Evaluation 
To evaluate the model performance of the control and assimilation simulations, the cloud 

agreement index (AI) and model statistics with respect to surface observations were calculated. 
AI is defined over the model domain as the total number of grid cells that are in agreement 
with satellite observation (either cloudy or clear) divided by the total number of grid cells. Table 
6 shows the contingency table describing how AI is calculated.  

  
Table 6.  Contingency table used for evaluating model cloud simulation. 

AI = (A+D) / (A+B+C+D) 
WRF 

TOTAL 
Cloudy Clear 

G
O

ES
 Cloudy A B A+B 

Clear C D C+D 

TOTAL  A+C B+D A+B+C+D 
 
The (AI) calculates how well the model does at producing clouds in the correct place and at 

the correct time when compared to GOES satellite observations.  Thus, it will be used as the 
metric to rate the model cloud performance. Therefore a value of AI closer to 1 is desirable. The 
AI was calculated for each hour in the range 15:00-22:00 UTC in the August-September 2013 
time frame.  The time range was chosen to ensure maximum daylight coverage across the 
domain so that GOES imager observations are available.  The hourly AIs were then averaged to 
produce the daily AI.  To calculate model statistics with respect to surface observations, 
METSTAT (http://www.camx.com/download/support-software.aspx) was used to determine 
the model bias and root mean square error (RMSE) for wind speed, temperature, and mixing 
ratio.   

 

4.1.1. Performance Statistics for Domain 1 
The daily AI for domain 1 in Figure 11 shows that the ASSIM simulation has a greater AI than 

the CNTRL simulation for all days in the simulation time period.  The average daily percentage 
increase in the AI from the CNTRL to the ASSIM simulation was found to be 12.71%.  The 
individual hourly results similarly showed that the AI was greater for the ASSIM simulation than 
it was for the CNTRL simulation.  The maximum hourly percentage increase was found to be 
22.54%, while the minimum increase was 0.92%.  These results show that this GOES 
assimilation technique, overall, does improve cloud placement in space and time relative to 
GOES satellite observations. The large variation in hourly AIs within a day indicates that the 
technique at some periods is more effective than other periods. Figure 12 shows the average 
hourly AI for the simulation period. The assimilation technique performs better in the latter 

http://www.camx.com/download/support-software.aspx
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part of the day. For this domain (36-km domain) the hourly pattern for assimilation is not 
drastically different from the control simulation. 

 
Figure 13 shows a spatial plot of the agreement index for August 21, 2013 at 17 UTC.  In this 

figure green and grey areas indicate that both model and GOES observations agree on being 
clear (green) or cloudy (grey). Red areas indicate model over-prediction of clouds (as compared 
to satellite observation) and orange indicate model under-prediction. The figure shows that the 
CNTRL simulation has trouble creating clouds in locations that GOES observes them as indicated 
by the large coverage of orange shading.  Also, the CNTRL simulation tends to produce more 
clouds over the ocean than what is observed by GOES, as indicated by the red shading in the 
figure.  By assimilating GOES observations into WRF, the result is less over-prediction and 
under-prediction of clouds with respect to observations, as can be seen with the reduction of 
orange and red shading when the two images are compared. For this scene, the agreement 
index (AI) is increased by 13.5%.  

 
Evaluating the model performance with respect to surface observations, assimilation 

simulation reduces wind speed bias, but increases the temperature cold bias.  The wind and 
temperature statistics are shown in Figure 14. The wind speed bias is less in the assimilation 
simulation but the error actually increases indicating that the reduction in the bias is more due 
to an increase in the wind speed across the domain.  The negative temperature bias is 
increased in the ASSIM simulation, which is due to higher cloud fractions throughout the model 
domain than the control simulation. It seems that the assimilation simulation improved AI 
mostly by creating clouds over land and removing them over ocean causing a reduction in the 
amount of energy (radiation) reaching surface and increasing an inherent cold bias in the 
model. For mixing ratio, generally the control simulation tends to be dryer, but overall closer to 
the observations.   
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Figure 11. Daily agreement index for CNTRL and ASSIM 36 km WRF simulations over August-September 2013 

using a 10% cloud albedo threshold. 
 

 
Figure 12. Average hourly AI for August-September 2013. Assimilation performs better in the latter part of the 

day. 
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Figure 13.  Comparing model cloud to satellite observation for CNTRL (left) and ASSIM (right) simulations for 

August 21, 2013 at 17 UTC: Green indicates the model and GOES were clear, Red indicates model 
cloud over-predictions, Orange indicates model cloud under-predictions, and Grey indicates 
locations where the model and GOES are cloudy. Agreement Index for a) CNTRL (AI=59.9%) b) 
ASSIM (AI=73.4%).   

 

 

 
Figure 14.  Wind speed and temperature bias results for CNTRL and ASSIM simulations.  
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Overall, the results of the 36 km grid indicate that the assimilation technique led to better 

cloud agreement.  In doing so, the assimilation simulation increased the surface wind speeds 
across the domain and increased the surface moisture as well. 

 

4.1.2. Performance Statistics for Domain 2 
For the 12 km domain, the control and assimilation WRF simulations are compared with 

observations in the same manner.  The daily AI results are shown in Figure 15.  Similar to the 
results for the 36 km domain, the daily AI for the ASSIM simulation was greater than the CNTRL 
simulation.  However, the average daily percentage increase was determined to be less at 
9.65%.  Also, AI exhibited greater variability in the hourly comparisons over the control 
simulation.  The maximum hourly percentage increase was found to be 24.75%, while the 
minimum hourly percentage increase was found to be -4.70%.  The negative sign indicates that 
at the particular hour, the control simulation actually performed better.  However, this 
decrease in the AI occurred during times where the AI was already high for control simulation 
(AI>80%), in which corrections to disagreement areas tend to have a higher probability of 
disrupting areas previously in agreement with the GOES observations.  

 
Figure 16 shows the average hourly AI for the 12-km domain during the simulation period. 

Similar to the 36-km domain, the assimilation technique performs better than control for all 
hours of the day, but the pattern is different from the 36-km domain. For the 12-km domain the 
hourly pattern for assimilation shows a reduction for AI as the sun moves overhead. The largest 
AI’s are achieved in mid-morning and the latter part of the day. 

 
Figure 17 shows a spatial plot of the AI for August 27, 2013 at 22 UTC.  For this particular 

hour, the AI for the CNTRL was low with a large amount of under-prediction (orange) by the 
model centered over Texas and over-prediction (red) by the model over the Gulf of Mexico up 
into Mississippi.  The ASSIM simulation was able to efficiently clear the over-prediction areas 
and increase the cloud coverage over the state of Texas where there was under-prediction.  
This resulted in better overall agreement between the model and GOES observations.  Thus, 
while on the average AI for 12-km domain was less than 36-km simulation, there are particular 
hours when the assimilation technique substantially improve cloud placement for 12-km 
domain.    
     

 Evaluation of model performance for the 12-km grid with respect to surface observations 
shows that the ASSIM simulation performs better with respect to temperature. Both bias and 
RMSE are reduced for temperature. For the mixing ratio, the result is mixed. Bias in the mixing 
ratio is slightly increased for some days and reduced for other days. The ASSIM simulation 
tends to increase the mixing ratio but not as consistently as was seen in domain 1. The 
temperature and mixing ratio biases are shown in Figure 18. The wind speed bias is less in the 
ASSIM simulation throughout the simulation period but the error fluctuates.  The reduction in 
temperature RMSE for ASSIM simulation is due to the correction of clouds within the model.  
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Overall, the results for the 12-km grid indicate that the assimilation technique led to 

improved cloud agreement.  In doing so, the ASSIM simulation improved the model 
performance for surface temperature.  As the grid size was reduced, the wind speed statistics 
for the ASSIM simulation improved, but there are still times where the error in the wind 
statistics is less for the CNTRL simulation.  The mixing ratio results also started to become more 
variable between the two simulations with the CNTRL simulation having less error on some 
days.  With the reduction in the spatial coverage of the domain, it is likely that analyzing more 
spatial patterns would reveal the exact cause of these variations and perhaps will lead to 
identifying the scenarios in which satellite cloud assimilation would be more effective. Future 
research also will try different model configurations to identify which configuration is more 
conducive to the adjustments introduced by this technique. 

 
 

 
Figure 15. Daily agreement index for CNTRL and ASSIM 12 km WRF simulations over August-September 2013 

using a 10% cloud albedo threshold. 
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Figure 16. Average hourly AI for 12-km domain during August-September 2013. 
 

 
Figure 17.  Comparing model cloud to satellite observation for CNTRL (left) and ASSIM (right) simulations for 

August 27, 2013 at 22 UTC: Green: model and GOES were clear, Red: model cloud over-predictions, 
Orange: model cloud under-predictions, and Grey: locations where the model and GOES are cloudy. 
Agreement Index for a) CNTRL (AI=59.0%) b) ASSIM (AI=73.6%).  
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Figure 18. Temperature and mixing ratio bias results for 12-km CNTRL and ASSIM simulations. 

 

4.1.3. Performance Statistics for Domain 3 
For the 4-km domain, the improvement in the AI was less significant. Figure 19 shows the 

daily averaged AI for the 4-km domain during August and September, 2013. The average daily 
percentage change in the AI due to cloud assimilation was 6.28%.  However, for domain 3 there 
were three days where the daily AI for the CNTRL and the ASSIM simulation were almost 
similar.  Much like the domain 2 results, the hourly percentage change in the AI for domain 3 
between the two simulations fluctuated from day to day.  The maximum hourly percentage 
increase was found to be 26.07%, while the minimum hourly percentage increase was found to 
be -9.13%.  The negative percentage change indicates that the control simulation performed 
better during those hours.  It should be noted, however, that for domain 3, the degradation in 
the hourly AI performance was not only during times that the initial CNTRL AI was high, unlike 
what was found for domain 2.  This can likely be attributed to one of two factors.  The first is 
that the advection of the clouds between 4-km grid cells in the model is more likely to occur 
within an hour which is the time scale of satellite observations used here. Thus, a cloud created 
in the correct place might move to a surrounding grid quicker than what observation can 
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explain.  The second is that the correction scheme can correct a grid but at the same time 
change the AI in the neighboring grids.  

 
Figure 20 shows the average hourly AI for the 4-km domain during the simulation period. 

While the assimilation technique performs better than control for all hours of the day, the 
pattern shows a larger reduction in AI as the sun moves overhead. As for the 12-km domain, 
the largest AI’s are achieved in mid-morning and the latter part of the day. 

 

 
Figure 19.  Daily agreement index for CNTRL and ASSIM 4 km WRF simulations over August-September 2013 

using a 10% cloud albedo threshold. 
 

 
Figure 20. Average hourly AI for 4-km domain during August-September 2013. 
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 The cloud correction scheme also was capable of improving the AI for hours in which the 

CNTRL simulation had high AI (AI>90%).  The capability to correct cloud placement when the 
original simulation performs both good and bad likely indicates that the assimilation technique 
becomes more dependent on the atmospheric conditions as the grid resolution is increased and 
the spatial extent is decreased.  As an example, a spatial plot of the AI for September 16, 2013 
at 19 UTC is shown in Figure 21.  For this hour, it can be seen that the CNTRL simulation had 
under-predicted clouds across a large portion of Texas but the ASSIM simulation was able to 
correct a rather large portion of this area, improving the AI by greater than 10%, but unable to 
correct all the error.  These results indicate that the assimilation technique on average 
improves the cloud placement in space and time, but not as significantly as was seen for 
domains 1 and 2.      

 

 
Figure 21. Comparing model cloud to satellite observation for CNTRL (left) and ASSIM (right) simulations for 

September 16, 2013 at 19 UTC: Green: model and GOES were clear, Red: model cloud over-
predictions, Orange: model cloud under-predictions, and Grey: locations where the model and 
GOES are cloudy. Agreement Index for a) CNTRL (AI=44.5%) b) ASSIM (AI=56.1%). 

 
Evaluating the model performance of the 4-km grid with respect to surface observations, 

the ASSIM simulation still performs better with respect to temperature but the results for wind 
speed and mixing ratio (not shown here) are highly variable. The wind speed bias is less in the 
ASSIM simulation throughout the simulation period but the error fluctuates as was seen in 
domain 2.  Cloud assimilation reduced the RMSE of the temperature, which is likely due to the 
correction of clouds within the model.  For mixing ratio, the ASSIM simulation tends to reduce 
the model bias and error for some days but increase it for others. Figure 22 shows the wind and 
temperature bias results. 

 
Overall, the results of the 4 km grid indicate that the assimilation technique still led to 

better cloud agreement.  In doing so, the ASSIM simulation once again improved the model 
performance for surface temperature.  As the grid size was reduced, we also saw some further 
improvement in the wind speed statistics of the ASSIM simulation.  However, there are still 
times where the error in the wind statistics is less for the CNTRL simulation.  With the further 
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reduction in the spatial coverage of the domain, it is likely that analyzing more spatial patterns 
would allow distinguishing the physical processes responsible for the differences in the surface 
statistics.  It is also apparent that there are distinct periods of time where one simulation out 
performs the other.  This indicates that more analysis is needed to determine the cause.       

  

 

 
Figure 22. Wind speed and temperature bias results for CNTRL and ASSIM for 4-km domain. 

 

5. BVOC AND SOIL NOX EMISSION ESTIMATES IN MEGAN 
TCEQ has historically simulated biogenic emissions with the Global Biosphere Emissions and 

Interactions System (GLOBEIS), a model based on the BEIS (Biogenic Emission Inventory System) 
family of models developed by Alex Guenther and others in the 1980s and 1990s. TCEQ is now 
considering MEGAN (Model of Emissions of Gases and Aerosols from Nature, Guenther et al., 
2006, 2012). This model applies more sophisticated algorithms to represent the responsiveness 
of biogenic emissions to changing conditions and which continues to be updated in ongoing 
model development efforts by Guenther and others. 
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In this project MEGAN was applied with different WRF simulations from the episodes of 
interest in 2006 and 2013 and with 8-day MODIS-based leaf area index (LAI) data to replicate 
the baseline approach used by TCEQ. MEGAN was also applied with photosynthetically active 
radiation (PAR) data from two satellite-based retrievals: the product developed by Dr. Rachel 
Pinker of University of Maryland, and the new PAR data created by University of Alabama-
Huntsville.  

 
Also in this project, the new Berkeley-Dalhousie soil NO parameterization scheme (BDSNP) 

was implemented into CMAQ. A stand-alone version of BDSNP was also constructed. With the 
offline capability, the influence of wet and dry N depositions to nitrogen reservoir in BDSNP 
module were estimated by using archived CMAQ or CAMx simulation results instead of by 
online calculation along with the time consuming atmospheric chemistry module.  We will also 
explore the influence of using temperature data from the satellite retrievals to influence the 
soil NOx emission rates. All of the MEGAN estimates of biogenic VOCs and soil NOx will be 
converted into a CAMx ready format and substituted for the biogenic emissions component of 
the base CAMx runs. 

 

5.1. Initial BVOC and Soil NOx Emission Estimates in MEGAN 
The WRF-MEGAN modeling framework was implemented to quantify the sensitivity of 

BVOC emission estimates to different PAR inputs (WRF versus satellite-based). The September 
2013 period on the 12km CONUS domain was used for the initial testing. Details of the WRF and 
MEGAN configurations are provided in Table 7. 

 
Table 7.  Configuration of WRF-MEGAN used in the initial  study. 

WRF
Version: ARW1 V3.6.1 Shortwave radiation: RRTMG2 scheme
Horizontal resolution: D1 (CONUS, 36km); D2 (SW US, 12km) Surface layer physic: Pleim-Xiu surface model

D3 (E Texas, 4km) PBL scheme: ACM23

Vertical resolution: 42 layer (first layer height ~ 37 m) Microphysics: Morrison double-moment scheme
Boundary Condition: NARR4 32km Cumulus Parameterization: Kain-Fritsch scheme
Initial condition: NCEP-ADP5 Analysis nudging: NCEP-ADP5

Longwave radiation: RRTMG2 scheme Temp., wind, moisture above boundary layer
MEGAN

Version: V2.10 Emission factor: Global emission factor (ver. 2011)
Horizontal resolution: Same as WRF Leaf area index: 30 sec, MODIS6 8 day average
Plant functional type: 16 CLM7 PFT8 types, 30 sec Gas-phase  mechanism: CB69  
Note: 1, ARW: Advanced Research WRF; 2. RRTMG: Rapid Radiative Transfer Model for GCMs; 3. ACM2: 
Asymmetrical Convective Model version 2; 4. NARR: North American Regional Reanalysis; 5. NCEP-ADP: National 
Centers for Environmental Prediction-Automated Data Processing; 6. MODIS: Moderate Resolution Imaging 
Spectroradiometer; 7. CLM: Community Land Model; 8. PFT: Plant Functional Type; 9. CB6: Carbon Bond 
Mechanism version 6. 

 
By default, the MEGAN model scales the insolation data from WRF uniformly by half 

(CF=0.5) to represent the PAR value. MEGAN simulations with the satellite retrievals directly 
used satellite-based PAR estimates, which had already been computed by condition-specific 
conversion factors. Data from the UAH retrievals were aggregated from nine 4km pixels to 
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represent one PAR value on the 12km grid used in the MEGAN simulations. MEGAN BVOC 
emission outputs for isoprene (ISOP) and monoterpenes (TERP) with the two types of radiation 
input were compared. Figure 23 shows the spatial pattern of emissions and the percent 
difference between the two estimates. The base cases with WRF inputs are shown on the left, 
and the percent changes caused by satellite-based PAR are shown on the right.  

 
In terms of magnitude, the estimated ISOP emission rate is much larger than TERP, with 

hotspots appearing at Southeast states with the typical value of 30 mol/s/gridcell, while the 
corresponding typical value for TERP is only 5 mol/s/gridcell during the evaluation period. 
However, due to the different plant functional types and different temperature response curve 
between ISOP and TERP, the geographic distribution of TERP emission is wider than ISOP; in 
other words, there is less spatial heterogeneity for TERP compared with ISOP. Isoprene 
emission is more sensitive to PAR inputs with the highest increase region in the Northeast (> 
30%) and decrease in the Northwest (> 20%). The relative change for monoterpene emission is 
modest (-10% to 5%).  

 

 
Figure 23.  Spatial distribution of estimated ISOP and TERP emission rate by MEGAN using different PAR inputs 

data (WRF versus UAH satellite retrievals) 
 
The domain-wide sum of ISOP and TERP emission rates based on different climate regions 

using different PAR inputs is presented in Figure 24. The figure shows that the South and 
Southeast region is the largest contributor to BVOC emission. Emission rate estimates using 
satellite PAR data is projected to increase in the Northeast by 4%, Southeast by 1% but 
decrease in the Northwest by 7%, West in 7%, and South region in 8% for both isoprene and 
monoterpene. 
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Also, in the initial testing, the Berkeley Dalhousie soil NOx parameterization scheme 

(BDSNP) was implemented in MEGAN as an alternate option to the old Yienger-Levy 1995 
parameterization (YL95). The implementation in CMAQ better represented the soil NOx 
response to nitrogen deposition, fertilizer application and changing meteorology. Figure 25 
demonstrates the daily mean difference of soil NO emission estimates by using the BDSNP 
scheme at one test case in July 2011 at 12 km CONUS domain. It can be seen that for 
agricultural areas in United States, the soil NO emission is projected to increase by more than 5 
mg/s/grid with the highest increase appearing at Kansas and Northern Texas.  

 

 
Figure 24.  Total ISOP (left) and TERP (right) emission rate estimates by MEGAN using different PAR inputs 

data (WRF versus UAH satellite retrievals) for each climate region in United States. 
 

 
Figure 25. Demonstration of spatial different of soil NO emission rate estimates using BDSNP or YL95 scheme. 
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Since these initial results were satisfactory, the project proceeded to perform a more 
detailed study for August-September 2013. 

5.2. MEGAN Simulations with Satellite-Based PAR during August-
September 2013 

Three sets of MEGAN runs were carried out to quantify the impact of different PAR inputs 
on biogenic emission estimates over the TCEQ SIP domains during September 2013. These 
inputs were: 1) satellite-based PAR retrievals from GOES imager, 2) control WRF simulation 
(cntrl) with basic WRF configuration, and 3) WRF with cloud assimilation (analytical) that 
assimilated clouds from GOES observations. The details of the WRF-MEGAN model 
configurations, simulation case arrangement, and the simulation time period selection are 
given in Table 8. The modeling domains are shown in Figure 8. 

 
Table 8.  MEGAN configuration used in the 2013 study. 

MEGAN
Version: V2.10 Emission factor: Global emission factor (ver. 2011)
Horizontal resolution: Same as WRF Leaf area index: 30 sec, MODIS1 8 day average
Plant functional type: 16 CLM2 PFT3 types, 30 sec Gas-phase  mechanism: CB-054

Simulation Case Arrangement
1. PAR_cntrl: Base WRF simulation to provide insolation for MEGAN
2. PAR_analytical: Base WRF + cloud assimilation from GOES5 to provide insolation for MEGAN
4. PAR_UAH: Direct use PAR retrievals from UAH, other met inputs same as case 'PAR_analytical'

Simulation Time Period
Sep 1-30, 2013  

Note: 1. MODIS: Moderate Resolution Imaging Spectroradiometer; 2. CLM: Community Land Model; 3. PFT: Plant 
Functional Type; 4. CB-05: Carbon Bond Mechanism version 5; 5. GOES: Geostationary Operational Environmental 
Satellites. 
 

The raw UAH 4km CONUS PAR retrieval products were mapped to the three TCEQ SIP 
simulation domains (36km for CONUS, 12km for Texas and 4km for east Texas) using the 
revised utility codes based on the UNC Spatial Allocator. The regridded PAR products directly 
replaced the calculated PAR. In default mode, MEGAN assumes PAR to be half of the solar 
radiation reaching the surface (RGRND). 

  
The biogenic VOC emissions from MEGAN were lumped according to CB05 chemical 

mechanism and were archived in the NetCDF format. (NOTE: The total disk storage of the two 
months MEGAN runs is 2.9 GB for D1, 5.4 GB for D2 and 16.8 GB for D3. It is ready to share with 
the CAMx Fortran binary input format using the CMAQ2CAMx interface program provided by 
Ramboll-Environ, http://www.camx.com/getmedia/a9e648b7-2b2d-487d-9243-
2f363a6feea4/cmaq2camx-4sep13.tgz.aspx). 

 
Since the focus of this study is to provide useful information for TCEQ SIP modeling, only 

MEGAN results from domain 2 (the Texas domain, D2) is presented here.  Figures 26 and 27 
show the comparison of the spatial patterns of the monthly mean isoprene (ISOP) and 
monoterpene (TERP) emission rates for the three different PAR inputs during August and 
September 2013. 
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For the ISOP simulations during August 2013, the general emission pattern for the three 
PAR inputs case is quite similar. Hot spots over the Texas territory mainly concentrated over the 
Edwards Plateau and the eastern Texas boundary adjacent with the Louisiana and Arkansas, 
where the broadleaf evergreen tree or shrub is the dominate plant functional type.  

 

 
Figure 26. Comparison of the spatial patterns of the monthly mean isoprene (ISOP) emission rate using 

different PAR inputs for WRF control case (cntrl), WRF cloud assimilation case (analytical) and PAR 
satellite retrievals (PAR) in MEGAN over Texas domain during August (left) and September (right) 
2013. 
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Figure 27. Comparison of the spatial patterns of the monthly mean monoterpene (TERP ) emission rate using 

different PAR inputs for WRF control case (cntrl), WRF cloud assimilation case (analytical) and PAR 
satellite retrievals (PAR) in MEGAN over Texas domain during August (left) and September (right) 
2013. 

 
In terms of the magnitude, the ‘UAH’ case is the lowest with the maximum value 54 

moles/s/grid, followed by the ‘analytical’ and ‘cntrl’ case. For September, the base ISOP 
emission is lower than that of in August 2013 due to the lower mean surface temperature and 
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smaller leaf area index value input from MODIS.  The pattern for TERP during the two months in 
2013 shows additional hot spots near the south Texas boundary adjacent to Mexico. The overall 
magnitude of mean TERP emission rate is much smaller than for ISOP, with TERP ranging 0-6 
moles/s/grid and ISOP 0-68 moles/s/grid. 

 
In order to characterize BVOC emission pattern from different MEGAN simulations over the 

heterogeneous plant functional type over Texas, the average monthly emission rates over the 
10 climate divisions in Texas were calculated separately. The climate classification is based on 
historical climate analyses (1895-2013) for the monitored drought, temperature, precipitation 
and heating/cooling degree day values over the continental US 
(http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-divisions.php). The 
geographic locations of these 10 climate divisions in Texas are illustrated in Figure 28. An area 
mask file consistent with the TCEQ domain configurations were generated based on the climate 
division boundary polygon shapefiles provided by NCAR 
(http://www.ncl.ucar.edu/Applications/Data/cdf/climdiv_polygons.nc).  

 

 
Figure 28. Geographic distribution of the 10 climate divisions in Texas by the National Weather Service 

(adapted from http://www.nass.usda.gov/Statistics_by_State/Texas/Charts_&_Maps/cwmap.htm) 
 
The ISOP and TERP results are given as the histogram comparison plots in Figure 29 and 

detailed statistics in Table 9.  
 
 

http://www.ncl.ucar.edu/Applications/Data/cdf/climdiv_polygons.nc
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Figure 29. Comparsion of average isoprene (ISOP, top) and monoterpene (TERP, bottom) emission rate 

(tons/day) over the 10 climate divisions of Texas during August and September 2013 by MEGAN 
using different PAR inputs. 

 
For ISOP, the top 3 highest emission regions in Texas are East Texas (2754 tons/day for case 

‘UAH’), North Central Texas (2036 tons/day for case ‘UAH’), and Edwards Plateau (1199 
tons/day for case ‘UAH’) separately.  For TERP, the top 3 highest emission regions are East 
Texas (1011 tons/day for case ‘UAH’), Trans-Pecos (615 tons/day for case ‘UAH’), and North 
Central Texas (562 tons/day for case ‘UAH’).  
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Table 9. Comparison of daily average isoprene (ISOP) and monoterpene (TERP) emission rate 
(tons/day) over 10 climate zones of Texas from MEGAN using different PAR inputs. 

 
 
The results indicate that the case ‘UAH’ using GOES satellite retrievals on average predict 

21% less ISOP than the base WRF case (‘cntrl’) during August 2013 and 19% less during 
September 2013. The cloud assimilation WRF case (‘analytical’) predicts slightly less ISOP than 
case ‘cntrl’ with the mean value around -2% during August 2013 and -3% during September 
2013. The impact of more realistic insolation data from satellite on TERP is modest and on 
average is about 5% reduction. The TERP emission algorithm in MEGAN is more directly 
connected with the surface temperature instead of PAR. At least for the evaluated two months 
in 2013, the most sensitive climate region for ISOP emission estimation in Texas due to 
different PAR inputs is Trans-Pecos, with the relative difference compared to base case -28.8% 
during August 2013 and -24.7% during September 2013. 

 
Figure 30 plots the time series comparison of the daily mean ISOP and TERP emission rate at 

the highest BVOC emission climate division (East Texas) in Texas during the two months 
simulation period. It can be seen that both ISOP and TERP emission experienced the decreasing 
trend with the highest emission rate appearing at the first week of August (~ 5500 tons/day for 
ISOP and ~ 1300 tons/day for TERP for case ‘UAH’) and the lowest emission rate appearing at 
the third week of September (~ 200 tons/day for ISOP and ~600 tons/day for TERP for case 
‘UAH’).  The two lowest emission days during the simulation period, namely August 15 and 
September 20, correlate well with the regional weather pattern of low surface temperature, 
cloudy sky and major rain events. For Example, the weather chart and the corresponding 
satellite-based PAR for September 20 presented in Figure 31 indicate the presence of clouds 
and rain in east Texas causing the sharp drop in PAR. Daily mean PAR for this day is only 13 
W/m2 compared to typical 120 W/m2 for other days. Satellite-based PAR of less than 18 W/m2 
over Arkansas and East and north central Texas corresponds well with the low-pressure trough 
and large rain belt (in green area) from ground observations. 
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Figure 30. Comparison of the daily variation of isoprene (ISOP, top) and monoterpene (TERP, bottom) 

emission rate (tons/day) over East Texas during August and September 2013 by MEGAN using 
different PAR inputs. 
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Figure 31. US surface weather map at 7 a.m. E.S.T on September 20, 2013 from NOAA (left); and the daily 

mean PAR retrieval from UAH on September 20, 2013 (right). 
 
Overall, the good correlation between emission rates based on satellite-derived PAR and 

PAR calculated from the model field for these two months, indicate that the model, to a large 
degree, has been able to explain the synoptic scale pattern responsible for the reduction in 
emissions. One exception is August 8, 2013, when for both ‘cntrl’ and ‘analytical’ case, the 
predicted ISOP emission rate is around 7000 tons/day while the corresponding ‘UAH’ value is  
less than half of that. The large contrast is mainly due to a sudden drop of the PAR retrieval 
value from 140 W/m2 to 80 W/m2. Figure 32 shows the variation of temperature, PAR and the 
24-hr accumulated precipitation for the entire simulation period. As shown in the figure, for 
August 8, observed PAR shows a reduction indicating the presence of clouds, but the model 
does not reflect that in temperature and precipitation fields. 

 
Figure 33 provides the domain-wide sum of daily isoprene and monoterpene emission 

strength over the Texas for the three PAR inputs. It can be seen that the PAR retrieval case 
predicted nearly one fourth lower ISOP emission compared with the WRF simulation runs (5463 
moles/s for case ‘cntrl’, 5377 moles/s for case ‘analytical’ and 3698 moles/s for case ‘PAR’). No 
significant change for TERP emission for the three cases were observed, since the monoterpene 
emission algorithm in MEGAN is not directly linked with PAR/insolation but more response with 
the surface temperature. 
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Figure 32. Time series of average daily mean surface temperature (degrees Celsius, top), PAR (W/m2, middle) 

and 24hr accumulated precipitation (cm, bottom) over East Texas during August and September 
2013 by MEGAN using PAR satellite retrievals from UAH. 

 

 
Figure 33.  Domain-wise sum of estimated isoprene (ISOP) and monoterpene (TERP) emission strength over 

Texas area using different PAR inputs in MEGAN during September 2013. 
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5.3. Developing Offline BDSNP Module for Soil NOx Emission 
Estimates 

In addition to implementing the Berkeley-Dalhousie Soil NOx Parameterization (BDSNP) 
(Hudman et al., 2012) in CMAQ, a stand-alone version of BDSNP was also developed. Compared 
to the soil NO emission module used in most air quality models (Yienger and Levy 1995), the 
BDSNP scheme generates higher estimates of emissions and provides a more physically realistic 
representation of the dependence of emissions on soil temperature and moisture. BDSNP has 
previously been implemented into the GEOS-Chem global model (Hudman  et al., 2010, 2012), 
and into CMAQ.  However, the inline BDSNP module in CMAQ is computationally expensive and 
is not cross-platform applicable, so in this project an offline version of the BDSNP module was 
also developed. 

 
In the BDSNP scheme, soil NO emission estimates at each location are determined based on 

a biome-specific base emission factor and an available soil nitrogen pool originating from 
fertilizer application and nitrogen deposition from the atmosphere. Emission rates are 
modulated based on response functions to soil temperature and soil moisture, a soil pulsing 
factor when precipitation follows a dry period, and a canopy reduction factor (see Figure 34).   

 

 
Figure 34. BDSNP soil NOx emission scheme given by Hunman et al. (2012). 

 
From the software engineering point view, Figure 35 provides the flow chart of the BDSNP 

scheme implementation with the option to run inline or offline with the air quality model. Static 
input files such as arid/non-arid climate zone, soil biome type (must be consistent with the type 
of the soil emission factors given by Steinkamp and Lawrence (2011)) and global fertilizer pool 
from Potter et al. (2010) are needed to determine the soil base emission value at each 
modeling grid.  
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Figure 35. Flow chart of the inline/off line BDSNP soil NOx emission model. 

 
Soil moisture and temperature, as well as some meteorological variables such as radiation, 

wind and air pressure are needed (from weather models) to drive the BDSNP to represent the 
occurrence of pulsing and the process of canopy reduction.  The major difference between the 
inline and offline options in BDSNP model is the approach to deal with the available nitrogen 
pool from the soil. For the inline BDSNP model (the dashed line), the dry or wet deposition 
process considered in the air quality model will continuously update the available nitrogen from 
the atmosphere to the ground; while for the offline BDSNP model (the sold line), only the 
generic daily nitrogen pool from the deposition process are used. Since the soil nitrogen pool 
needs a long time to build up and reach the quasi-steady state in the model, a new series of 
SOILINSTATE files are needed in the offline BDSNP model to provide the generic daily variation 
of N deposition. A full year CMAQ simulation over the 12km US continental modeling domain in 
2005 was performed to record the daily total soil N reservoir for further usage.  

 
As a test, a one week simulation (Jun 26-Jul 3, 2011) for soil NO emission estimates with 

both inline and offline options of BDSNP was performed. Figure 36 demonstrates the available 
soil N reservoir from deposition at Jun 28, 2011 (this is needed as one of the input files for the 
off-line BDSNP model). The “generic” available soil N reservoir from deposition process in this 
test case is the CMAQ deposition simulation results for the same time period.  The N deposition 
at Jun 28 is concentrated in the central United States and California. 
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Figure 36. Soil N reservoir from deposition (NDEPRES) used in off-line BDSNP model which is calculated from 

2005 CMAQ simulation results. 
 
Figure 37 provides the breakdown of each process in the off-line BDSNP model on the final 

soil NO emission estimates for Jun 28, 2011. These are the biome base emission (A_DIAG), 
fertilizer application amount (AFERT_DIAFG), soil nitrogen pool from deposition (NDEPRES), 
pulse factor (PFACTOR) and the canopy reduction factor (CRFAVG). For each modeling grid, a 
higher biome base emission factor plus higher fertilizer application and higher available N from 
deposition will result in higher potential to produce soil NO. Pulsing occurs following a 
precipitation event, with the strength of the pulsing depending on the length of the antecedent 
dry period. The scaling factor CRFAVG represents the loss of NO to the plant canopy. 

 
Figure 38 provides the comparison of the soil NOx emission estimates with the inline and 

offline options. It is obvious that with the nearly identical inputs files, the two options yield a 
quite similar result in terms of general spatial pattern and peak values.  

 
For periods that the pre-existing CMAQ N deposition fields are not available, full year 2005 

CMAQ deposition results can be used as a surrogate. The assumption is that the N deposition 
pattern in 2005 is comparable with the corresponding simulation date. 

 
In terms of computation time, the offline BDSNP module involves a far smaller burden than 

the inline option, which requires running the full CMAQ. Table 10 gives the CPU time estimates 
for the one-week test case run. The CPU time decreases from 282 min (using multiple processor 
parallel run) for inline BDSNP module to 3 min (single processor) for offline BDSNP module. 

 
This work is further improved generating a new soil biome spatial map based on the finer 

resolution land use/ land cover definition (NLCD40). 
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Figure 37. Impact of different BDSNP processes on the Soil NOx emission estimates. 

 

 
Figure 38. Comparison of soil NOx emission estimates using the inline (left) and offline (right) BDSNP scheme 

on Jun 28, 2011. 
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Table 10. Comparison of CPU time usage for inline and offline BDSNP. 

 
 

5.3.1. Developing a New Soil Biome Spatial Map Based on 12km CONUS 40-
category 2006 NLCD-MODIS Land Use Classification (NLCD40) 

The current offline Berkeley-Dalhousie Soil NOx Parameterization (BDSNP) module 
developed by Rice University uses the soil biome map directly re-gridded from global 
atmospheric chemistry model GEOS-Chem, which is too coarse for regional model 
implementation.  The biome map is related to the land use/ land cover (LU/LC) classification 
and Köppen-Geiger climate zone definition (Kottek et al., 2006) and will determine the base soil 
NOx emission strength. In this project, a new soil biome spatial map based on 12km CONUS 40-
category 2006 NLCD-MODIS land use classification (NLCD40) and climate zone definition was 
developed. This new biome map replaced the GEOS-Chem biome map to better represent the 
up-to-date LU/LC change with finer details.  

 
The first step in this process was the construction of a mapping table to transfer the 40 

categories of NLCD40 at each modeling grid to the 24 biome types for which soil NO emission 
factors are available from Steinkamp and Lawrence (2011). Table 11 details how the NLCD40 
has been mapped into the 24 biome type for soil NO emission estimates.  For the categories 
that have identical names in both categories, , such as ‘evergreen needle leaf forest’, 
‘deciduous need leaf forest’, ‘mixed forest’, ‘savannas’ and ‘grassland’, the mapping is direct. 
Further separation will be done for the biome categories with different emission factors at 
different climate zone. For the categories in NLCD40 with more detail definitions than 
corresponding biome category, such as water and urban lands, they will be consolidated into 
one category in biome by addition. For example, ‘soil and ice’ in soil biome category is equal to 
the addition of ‘permanent snow and ice’ and ‘perennial ice-snow’ in NLCD40 MODIS category; 
‘urban and build-up lands’ in soil biome category is equal to the addition of ‘developed open 
space’, ‘developed low intensity’, ‘developed medium intensity’ and ’developed high intensity’. 
For the categories appearing only in NLCD40, the mapping algorithm is according to the CMAQ 
mapping scheme, which is documented in each the CSQY_DATA_* under the MECHS/ directory 
in the CMAQ source code release. One such example is to map ‘lichens’ and ‘moss’ in NLCD40 
to the category ‘grassland’ in soil biome. 

 
Table 11. Mapping used to create the soil biome map based on NLCD40 MODIS land use/land cover 

categories. 

ID NLCD40 MODIS CATEGORY (40) ID SOIL BIOME CATEGORY (24) 
1  Evergreen Needleleaf Forest 19 Evergr. Needle. Forest 
2  Evergreen Broadleaf Forest 16 and 21 Evergr. Broadl. Forest 
3  Deciduous Needleleaf Forest 18 Dec. Needle. Forest 
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ID NLCD40 MODIS CATEGORY (40) ID SOIL BIOME CATEGORY (24) 
4  Deciduous Broadleaf Forest 17 and 20 Dec. Broadl. Forest 
5  Mixed Forests 15 Mixed Forest 
6 Closed Shrublands 7 Closed shurb 
7  Open Shrublands 8 and 9 Open shrubland 
8  Woody Savannas 14 Woody savannah 
9  Savannas 11 and 12 Savannah 

10  Grasslands 10 and  13 Grassland 
11  Permanent Wetlands 2 Permanent Wetland 
12  Croplands 22 Cropland 
13  Urban and Built Up 23 Urban and build-up lands 
14  Cropland-Natural Vegetation Mosaic 24 Cropland/nat. veg. mosaic 
15  Permanent Snow and Ice 3 Snow and ice 
16  Barren or Sparsely Vegetated 6 Barren 
17  IGBP Water 1 Water 
18  Unclassified 1 Water 
19  Fill value 1 Water 
20  Open Water 1 Water 
21  Perennial Ice-Snow 3 Snow and ice 
22  Developed Open Space 23 Urban and build-up lands 
23  Developed Low Intensity 23 Urban and build-up lands 
24  Developed Medium Intensity 23 Urban and build-up lands 
25  Developed High Intensity 23 Urban and build-up lands 
26  Barren Land (Rock-Sand-Clay) 24 Cropland/nat. veg. mosaic 
27  Unconsolidated Shore 24 Cropland/nat. veg. mosaic 
28  Deciduous Forest 16  and 21 Evergr. Broadl. Forest 
29  Evergreen Forest 19 Evergr. Needle. Forest 
30  Mixed Forest 15 Mixed Forest 
31  Dwarf Scrub 8 and 9 Open shrubland 
32  Shrub-Scrub 8 and  9 Open shrubland 
33  Grassland-Herbaceous 10 and  13 Grassland 
34  Sedge-Herbaceous 14 Woody savannah 
35  Lichens 10 and  13 Grassland 
36  Moss 10 and  13 Grassland 
37  Pasture-Hay 24 Cropland/nat. veg. mosaic 
38  Cultivated Crops 22 Cropland 
39  Woody Wetlands 2 Permanent Wetland 
40  Emergent Herbaceous Wetlands 2 Permanent Wetland 

 
 
For the second step, a model resolution compatible Köppen-Geiger climate zone 

classification is needed. This is to allocate the different emission factor for the same biome type 
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(e.g. ‘grassland’) at different locations. For the 12km CONUS domain, Spatial Allocator was used 
to generate the 5 category climate zone map as shown in Figure 39. These categories (A: 
equatorial, B: arid, C: warm temperature, D: snow, and E: polar) are based on the county level 
climate zone documentation text file as the surrogate (http://koeppen-geiger.vu-
wien.ac.at/data/KoeppenGeiger.UScounty.txt). The 12km climate zone product (bottom figure) 
matches well with original file (top figure) in which most of southern US is classified as the 
‘warm temperature’ region. Only a slight portion of Rocky mountain summit is classified as 
‘polar’ climate and the south corner of Florida State is classified as ‘equatorial’ climate. 

 
Figure 40 provides the comparison between the new soil biome spatial map based on the 

finer resolution LU/LC definition used in current CMAQ simulations and the old soil biome 
spatial map based on coarse GOES-Chem LU/LC setting. As the reference, the independent 30m 
resolution 2011 NLCD spatial map (http://www.mrlc.gov/nlcd2011.php) based on the Landsat 
satellite is also provided here.  In order to be comparable with the NLCD 2011 classification 
system, similar color legend was used to visualize the biome soil type. It can be seen that the 
new CMAQ 12km soil biome has much more detailed texture and closer geolocation 
correspondence than the old soil biome derived from GOES-Chem. For example, the new biome 
map has more identified ‘cropland’ in the central US states (e.g. Oklahoma, Kansas) while the 
old biome map are all ‘grassland’ at the same places. Also, the new biome map identifies a lot 
of ‘wetland’ near the southern coastal line area, which matches with the NLCD2011 
classification for ’90 woody wetlands’ and ’95 emergent herbaceous wetlands’. 

 
The new soil biome map was used to run the soil BDSNP model and evaluate its impact on 

soil NO emission estimates. 
 
 

http://www.mrlc.gov/nlcd2011.php
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Figure 39. Spatial map of five climate zones over CONUS 12km domain (bottom) based on Köppen-Geiger 

climate classification (top). 
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Figure 40. Comparison of the spatial pattern of 2011 National Land Cover Database (30m resolution, top) with 

the soil biome type developed either from GEOS-Chem (0.25 degree resolution, middle) or from 
MODIS NLCD40 classification in CMAQ (12km resolution, bottom). 
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5.3.2. Test Case for soil NO emissions using stand-alone BDSNP scheme 
Functionality of stand-alone soil NO emission module with BDSNP scheme and the new soil 

biome map using the 12km resolution NLCD40 land use classification and Köppen-Geiger 
climate classification map was tested. With the high efficiency of the stand-alone version, more 
sensitivity tests can be carried out by switching the key input parameters for soil NO emission in 
the BDSNP module (e.g. different soil biome, different base emission factors, and different 
fertilizer pools). Figure 41 provides the difference in spatial pattern between soil NO base 
emission simulated by this stand-alone model using global GEOS-Chem soil biome (control), 
updated regional soil biome based on NCLD40 (new Biome), and North American specified 
emission factors (NA EF) over continental US.  

  

 
Figure 41. Spatial pattern difference of soil NO base emission simulated from BDSNP module using the global 

GEOS-Chem soil biome (control), updated regional soil biome based on NCLD40 (new Biome), and 
North American specified emission factors (NA EF) over the continental US. 

 
In comparison to the ‘control’ case, the soil NO base emission pattern from case ‘new 

Biome’ has much detail texture due to the usage of higher resolution biome map and better 
representation of geographic locations for cropland over Midwest and evergreen board leaf 
forest along the South Eastern coastal areas.  The original implementation of soil NO BDSNP 
module used the global average biome type specific emission factors, which is 2-3 times higher 
than the local US measured values for the category such as cold savannah. Using the local 
emission factor intend to produce more realistic results in this project.  
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The soil NO emission rate in the default MEGAN model is based on the Yienger and Levy 

1995 (YL95) scheme. All the BDSNP input files including biome type map, fertilizer pool map, 
arid/non arid map, nitrogen deposition from dry and wet process were re- gridded to be 
consistent with the TCEQ modeling domains.  The daily magnitudes of nitrogen deposition pool 
used are from the 2005 CMAQ simulation results. Figure 42 demonstrates the difference in 
spatial pattern for daily mean NO emission rate between YL95 and BDSNP on August 1, 2013 
over the TCEQ Texas domain (D2). 

 

 
Figure 42. The difference in spatial pattern between daily mean soil NO emission rate (g/s) from MEGAN 

default YL95 scheme (left) and BDSNP scheme (right) on August 1, 2013 over the Texas domain. 
 
Note the different color scales in the figures. The magnitude of soil NO emission predicted 

from BDSNP for this day is generally 2-3 times higher than that from YL95, with the maximum 
value 14.6 gm/s versus 8.4 gm/s. The spatial pattern for the two cases is also quite different 
due to the combined contributions from different soil biome types, fertilizer implementations, 
and the different response curve for soil temperature and moisture in the two soil NO schemes. 
The two-month soil NO emissions simulated with BDSNP scheme by using the two set of WRF 
runs (case ‘cntrl’ and case ‘analytical’, presented in the following section) will be archived 
separately along with MEGAN results and hand over to TCEQ for further test.  The 
documentation and user’s manual for the stand-alone soil NO BDSNP module also will 
accompany the final report. 

 

5.4. Soil NO emission estimates for 2013 using BDSNP scheme 
The stand-alone BDSNP module was used to estimate soil NO emissions for August and 

September 2013 over the TCEQ SIP domain. Two sets of WRF outputs (‘cntrl’ and ‘analytical’) 
were used to drive the BDSNP module. 
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Figure 43 show the spatial patterns for the monthly mean soil NO emission rates using 
different WRF runs and different soil NO algorithms for the month of August 2013. Figure 44 
shows the similar patterns for September 2013.  

 
 

 
Figure 43. Comparison of the spatial patterns of the monthly mean soil NO emission rate using different 

meteorology inputs, WRF control (cntrl) and WRF cloud assimilation (analytical) and different soil 
NO emission algorithms, YL95 and BDSNP, over Texas domain during August 2013. 

 
As expected, the soil emission rates estimated by BDSNP module are consistently higher 

than the results estimated by YL95 algorithm. However, the spatial patterns for the two 
algorithms are quite different. For instance, the hotspot emission regions are predicted to be 
near the suburbs of Houston for YL95 case, while for BDSNP case, the hotspots appear to be 
near the state boundary between Texas and Louisiana and Arkansas. Again, those contrast may 
due to the combined contributions from different soil biome types, fertilizer implementations, 
and the different response curve for soil temperature and moisture in the two soil NO schemes. 
Note that contrary to the test case, in these plots the same color scale has been used. 
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Figure 44. Comparison of the spatial patterns of the monthly mean soil NO emission rate using different 

meteorology inputs, WRF control (cntrl) and WRF cloud assimilation (analytical), and different soil 
NO emission algorithms, YL95 and BDSNP, over Texas domain during September 2013. 

 
There is no obvious difference due to the use of different meteorology fields (with or 

without cloud assimilation). For August 2013 using YL95 algorithm, the maximum emission rate 
decreased from 2.51 moles/s to 2.21 moles/s by adding cloud assimilation; while for the BDSNP 
case, the trend is opposite, the maximum emission rate increased from 2.95 moles/s to 3.31 
moles/s. A similar pattern is seen for September 2013 monthly mean values. It should be noted 
that for YL95 case, the emission rate for September is generally lower than the value in August, 
while for BDSNP case the values are comparable for the two months. The mean air temperature 
in September 2013 is lower than that of August 2013, which directly causes the low scaling 
factor due to soil temperature in YL95 algorithm. However, in BDSNP module, the response of 
NO emission to soil temperature is more complicated (and in this case modest). 

 
Similar to characterization of BVOC emission patterns from MEGAN over ten climate 

divisions in Texas, average soil NO emission rates over different climate divisions using YL95 or 
BDSNP algorithms are shown as the histogram in Figure 45. For both YL95 and BDSNP cases, the 
top three emission regions are East Texas (1st for BDSNP case, 2nd for YL95 case), North Central 
Texas (2nd for BDSNP case and 1st for YL95 case) and High Plains (3rd place for both case).  
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Figure 45. Comparsion of average soil NO emission rate (moles/s) over the 10 climate divisions of Texas 

during August and September 2013 by different algorithms and meteorological fields. 
 
For BDSNP case, the emissions over the East Texas region are dominant (674 moles/s, 2.3 

times the corresponding YL95 case). The lowest emission region remains to be South Texas for 
both soil NO algorithms. However, the absolute value for YL95 case is almost three times higher 
than BDSNP case (34.8 moles/s for YL95 case versus 12.9 moles/s for BDSNP case, using the 
control WRF meteorology fields). Summing over the 10 climate divisions for the two-month 
period, the soil emission rate over Texas predicted by BDSNP module is 21% higher using the 
base WRF inputs and 14% higher using the WRF with cloud assimilation. Still, no significant 
difference (less than 5%) can be found when using the different meteorology inputs with the 
same soil NO algorithm.  

 
A user’s manual has been prepared for the stand-alone BDSNP module, which documents in 

detail the model structures and how to install and operate it for specific applications.  Further 
possible improvements, such as replacing the default global fertilizer map from Potter et al. 
(2010) with more dynamic and up-to-date fertilizer fields from EPIC outputs by considering the 
different farming management scenarios, are also provided in the user’s manual. The manual as 
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well as the tested benchmark case and the 4km resolution soil biome map will be provided to 
TCEQ as part of final delivery.  

 

6. CMAQ SIMULATIONS USING DIFFERENT MEGAN OUTPUTS WITH 
SATELLITE PAR 
To test and evaluate the impact of meteorological and emission changes on air quality 

simulations during August-September 2013, a series of CMAQ simulations were performed.  
CMAQ simulations using different biogenic emissions estimated by MEGAN with different PAR 
inputs (either from control WRF run, or WRF run with cloud assimilation, or UAH’s PAR retrieval 
product from GOES satellite imager) and soil NO emission either from YL95 or BDSNP schemes 
were performed.  The initial conditions and boundary conditions for domain 1 were extracted 
from NCAR’s global Model for Ozone and Related Chemical Tracers (MOZART) model outputs at 
3 hourly intervals. The anthropogenic emissions were provided by TCEQ for 2011 base year in 
CAMx FORTRAN binary format. 

 
Due to the multiple combinations of inputs for CMAQ and time limitation, only three cases 

were finally chosen to assess the impact of different biogenic emissions on ozone during 2013 
DISCOVER-AQ Houston campaign period. These configurations are listed in Table 12. 

 
Table 12. Different input combinations used in CMAQ simulations. 
Case # MET input ICON/BCON 

input 
EMIS input 

Anthropogenic Biogenic 
BVOC Soil NO 

C1 WRF (‘cntrl’) MOZART TCEQ(2011) MEGAN(‘cntrl’) YL95 
C2 WRF(‘analytical’) MOZART TCEQ(2011) MEGAN(‘UAH’) YL95 
C3 WRF(‘analytical’) MOZART TCEQ(2011) MEGAN(‘UAH’) BDSNP 

 
To show the quantitative impact of BVOC on ozone formation, only results from CMAQ 

simulations over D1 (CONUS, 36km resolution) and D2 (Texas, 12km resolution) domains for the 
first half of September 2013 (Sep 1-15, 2013, when the measured ozone and isoprene 
concentration data are available for model performance evaluation) will be presented here.  

 
Figure 46 provides the detailed flow chart showing the preparation of the emissions for 

CMAQ simulations. Since the gridded ground-level emission files in seven source categories 
(exclude the biogenic part) provided by TCEQ are in CAMx binary format, the utility 
‘CAMx2CAMQ’ was used to convert the emissions into the CMAQ I/O API format. The converter 
utility ‘CAMx2CMAQ’ was developed by Ramboll-Environ and can be obtained from the 
following site 
(https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/pm/582
1110365FY1420-20130830-environ-camx2cmaq_source_code.tgz).  The emissions then were 
combined with the different MEGAN outputs. 

https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/pm/5821110365FY1420-20130830-environ-camx2cmaq_source_code.tgz
https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/pm/5821110365FY1420-20130830-environ-camx2cmaq_source_code.tgz
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Figure 46. Flow chart to prepare daily emission input files for CMAQ run. 

 
For elevated sources (points and fires) calculated inline by CMAQ, the daily emission files 

provided by Jim Mackay from TCEQ were used to provide the daily specific stack information 
and emission profiles. The wildfire emissions were estimated by the FINN (Fire Inventory from 
NCAR) model and used the MODIS hotspots to allocate the locations.  Those files were also 
given in CAMx binary format and were converted to IO/API format by ‘CAMx2CAMQ’ utility. 

 
 The daily spatial pattern of the final emissions for key pollutants (SO2, NOx, CO, PM2.5 and 

VOC emissions) for September 1st, 2013, over the Texas domain (D2) in units of tons/day is 
shown in Figure 47. The color scales in these figures are different for each key pollutant and 
were scaled to best show the representative anthropogenic activity and plants distributions 
over Texas. The ground emissions are merged from seven emission source categories, namely 
‘area’, ‘Canada’, ‘low_points’, ‘Mexico’,  ‘nonroad’, ‘offroad’, and ‘onroad’. 
(ftp://amdaftp.tceq.texas.gov/pub/TX/camx/basecase/bc12_12jun.reg3a.2012_wrf361_p2a_i2
_a/input/ei/Components/). For each source category, there are different individual versions to 
represent the temporal variation, namely weekdays, Friday, Saturday and Sunday. A script was 
created to find the corresponding day-of-the-week for the simulation period and locate the 
corresponding files to merge. 

 

ftp://amdaftp.tceq.texas.gov/pub/TX/camx/basecase/bc12_12jun.reg3a.2012_wrf361_p2a_i2_a/input/ei/Components/
ftp://amdaftp.tceq.texas.gov/pub/TX/camx/basecase/bc12_12jun.reg3a.2012_wrf361_p2a_i2_a/input/ei/Components/
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Figure 47. Spatial pattern of daily ground gridded SO2, NOx, CO, PM2.5 and VOC emission prepared for CMAQ 

runs over Texas 12km domain on Sep 1, 2013 (tons/day). (The daily ground VOC emission pattern is 
given in three versions with different PAR inputs in MEGAN model). 

 
For NOx, CO and PM2.5 emissions, the majority of hotspots correlate well with the Houston, 

Dallas-Fort Worth, San Antonio and Austin metropolitan area in Texas and the major road 
network. The typical daily emission rates for NOx, CO and PM2.5 over the three metropolitan 
areas are 100 tons/day, 500 tons/day, and 50 tons/day (per grid cell) respectively.  For SO2 
emission, some hotspots (> 30 tons/day/grid-cell) correlate with the coal-fired power plant 
locations (from source category ‘point’ on the ground).  

 
For VOC emissions, the elevated values are mostly dominated by biogenic emissions over 

East Texas (adjacent to the border area of Louisiana and Arkansas), with the typical daily 
emission rate greater than 500 tons/day/grid-cell. Three versions of merged VOC emissions are 
presented in the figure. Each spatial pattern shows the impact of different MEGAN outputs 
(‘cntrl’, ‘analytical’ and ‘UAHPAR’). The case ‘UAHPAR’ has about 30% less isoprene emission 
and 5% less monoterpene emission compared with the base case due to the use of PAR from 
satellite retrievals (see Table 9). 
 

Table 13 summarizes the detail CMAQ configuration used in these simulations. The 
boundary and initial conditions were provided by the NCAR’s global chemical MOZART model 



 

 62 

outputs with the daily BCON files given in 3 hourly interval for the CONUS domain (for D2 
simulation, the BCON files were extracted using the D1’s concentration field). A spin-up period 
of 3 days, starting from Aug 29, 2013, was used to create the initial concentration fields used 
for September 1. The Carbon Bond-05 mechanism with chlorine (CB05cl) gas phase chemical 
mechanism, as well as aero5 aerosol module was selected. CMAQ version 5.0.2 was used for 
these simulations. The photolysis rates were calculated inline and the flags for windblown dust 
and inline lightning NOx were turned off due to the lack of input data. In total three sets of 
CMAQ runs were conducted using different biogenic emissions provide by MEGAN estimates.  

 
 

Table 13. Configuration of CMAQ simulation in this study. 
Input Variables Configurations 

Domain Setting D1 (CONUS, 36km, 148(C1)x112(R2)X29(L3)) 
D2 (Texas, 12km, 149(C)X110(R)X29(L)) 

Emissions Ground emission (anthropogenic from TCEQ, biogenic from 
MEGAN v2.10) 
Elevated emission (point source and wildfire from TCEQ) 

Boundary conditions MOZART (3hr interval) 

Initial conditions MOZART4 (for Aug 29, 2013) 
Spin-up days: 3day 

 
 
 
 

Chemical Transport Model 

CMAQv5.0.2 
Advection scheme: WRF 
Diffusion scheme: multiscale (horizontal), ACM25 (vertical) 
Gas mechanism: cb05cl6 

Aerosol module: aero5 
Cloud module: ACM22 

Photolysis: inline 
Lighting NOx: off 
Wind blow dust: off 
NH3 bi-directional flux: off 
Inline deposition velocity: on 

Simulation Period 15 days (Sep 1-15, 2013) 

Note: 1. C: columns; 2. R: rows; 3. L: layers; 3. MOZART:  Model for Ozone and Related Chemical Tracers; 4. ACM2: 
Asymmetrical Convective Model version 2; 5. Cb05cl: Carbon Bond gas phase mechanism version 5 with chlorine 
chemistry extension. 
 

Figure 48 shows the average spatial pattern of simulated maximum daily 8-hr average 
ozone concentrations (MDA8 O3) for the three cases over CONUS domain (D1) during 
September 1-15, 2013. In Texas, the predicted highest MDA8 O3 areas are located near Dallas-
Fort Worth with values greater than 65 ppbV. The typical MDA8 O3 value over Houston area is 
around 50-55 ppbV during the DISCOVER-AQ campaign period. By using the BVOC emission 
estimated by UAH PAR in MEGAN to drive the CAMQ, the simulated MDA8 O3 value are on 
average 3-7 ppbV less than that of the base case. This reduction is due to more accurate cloud 
representations in MEGAN (by decreasing the PAR input for isoprene emission and ground 
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temperature input for monoterpene emissions). This is also shown in the CMAQ daily mean 
isoprene concentrations shown in Figure 49 (with the typical predicted value over East Texas, 
decreasing from 4.8 ppbV for base case to 2.4 ppbV for UAHPAR case). The decreasing trend of 
ozone concentration in CMAQ over CONUS corresponds to the reduction in BVOC emission and 
is more pronounced over the regions where ozone formation is VOC-limited.   

 
 

 

Figure 48. Average spatial pattern of simulated maximum daily 8-hr average ozone concentrations (MDA8 O3) 
for three cases during September 1-15, 2013. 

 

 
Figure 49. Average spatial pattern of simulated daily mean isoprene concentrations for three cases during 

September 1-15, 2013. 
 
In order to evaluate the CMAQ performance over Texas, the predicted hourly ozone and 

isoprene concentrations were compared with the available ground measurements extracted 
from TCEQ’s GeoTAM (Geographical Texas Air Monitoring) interface database webpage 
(https://gisweb.tceq.texas.gov/geotam3/).   

 
Figure 50 shows the geographic location of selected observation sites for comparison. In 

total, 38 CAMS sites were chosen for ozone evaluation and 18 CAMS sites were chosen for 
isoprene comparison.  
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Figure 50. The locations of selected TCEQ CAMS sites for ozone (left, black markers) and isoprene (right, red 

markers) for CMAQ performance evaluation. 
 
Hourly CMAQ simulation results from domain 2 were extracted for the monitoring sites and 

compared with the observations (at local, central, staring time, UCT+06). Routine statistical 
metrics such as observation mean (OBS), simulation mean (SIM), correlation coefficient (R), 
root mean square error (RMSE), mean bias (MB), mean error (ME), normalized mean bias (NMB) 
and normalized mean error (NME) were calculated for the three cases. The statistics are listed 
in Table 14. In order to differentiate the possible spatial heterogeneity for ozone performance, 
the evaluation sites were grouped into 7 regions, namely Austin, Corpus Christ, Dallas-Fort 
Worth (DFW), east Texas (Beaumont), El Paso, Houston-Galveston-Brazoria (HGB), and San 
Antonio. Note that the numbers in the parentheses denote how many sites were averaged in 
this region.  

 
Table 14. Statistics for the CMAQ hourly ozone simulation performance for the three cases over 38 TCEQ 

CAMS sites (grouped by 7 regions). 
Case Group Sites OBS_AVE SIM_AVE R RMSE MB MAGE NMB NME 

    (ppbV) (ppbV) 
 

(ppbV) (ppbV) (ppbV) (%) (%) 

 
Austin (1) 44.2 33.9 0.70 17.4 -10.2 14.4 -23.1 32.5 

 
Corpus Christi (1) 16.9 34.8 0.69 20.1 18.8 18.9 111.2 111.7 

 
DFW (6) 42.1 38.3 0.75 15.4 -3.4 12.5 -5.8 30.6 

cntrl East Texas (1) 39.8 30.4 0.79 15.4 -9.0 12.5 -22.5 31.4 

 
El Paso (1) 36.0 29.3 0.55 14.7 -6.6 11.7 -18.2 32.4 

 
HGB (7) 22.4 28.1 0.78 13.1 7.8 10.5 36.3 47.8 

 
San Antonio (6) 25.1 34.1 0.75 13.9 9.2 11.5 37.3 46.2 

 
Total 30.6 32.7 0.75 14.5 2.8 11.9 18.2 42.6 

    
        

 
Austin (1) 44.2 32.9 0.71 17.8 -11.3 14.7 -25.6 33.3 

 
Corpus Christi (1) 16.9 33.7 0.70 19.2 17.9 18.0 105.7 106.3 

 
DFW (6) 42.1 37.6 0.77 14.8 -4.3 11.9 -8.2 29.1 

analytical East Texas (1) 39.8 30.4 0.76 16.1 -9.1 12.9 -22.8 32.4 

 
El Paso (1) 36.0 28.8 0.56 14.8 -7.1 11.6 -19.8 32.3 
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Case Group Sites OBS_AVE SIM_AVE R RMSE MB MAGE NMB NME 
    (ppbV) (ppbV) 

 
(ppbV) (ppbV) (ppbV) (%) (%) 

 
HGB (7) 22.4 27.9 0.78 13.0 7.5 10.4 35.1 47.5 

 
San Antonio (6) 25.1 34.0 0.78 13.4 9.0 11.0 36.8 44.3 

 
Total 30.6 32.4 0.76 14.2 2.4 11.6 17.0 41.7 

    
        

 
Austin (1) 44.2 32.8 0.70 18.0 -11.3 14.8 -25.6 33.6 

 
Corpus Christi (1) 16.9 33.7 0.70 19.2 17.9 18.0 105.7 106.3 

 
DFW (6) 42.1 37.8 0.77 14.7 -4.1 11.9 -7.7 28.9 

UAHPAR East Texas (1) 39.8 30.4 0.76 16.1 -9.1 12.9 -22.8 32.5 

 
El Paso (1) 36.0 28.8 0.56 14.8 -7.1 11.6 -19.7 32.2 

 
HGB (7) 22.4 27.9 0.77 13.0 7.5 10.4 35.3 47.7 

 
San Antonio (6) 25.1 34.1 0.78 13.5 9.1 11.1 37.3 44.7 

 
Total 30.6 32.5 0.76 14.2 2.5 11.6 17.3 41.8 

                    
 

 
The three CMAQ cases did not show a significant difference with respect to ozone 

simulation. Mean R values for all three cases over the 38 sites were around 0.75-0.76. On the 
average, the model overestimated mean ozone concentration by 2.4-2.8 ppb.  

 
By using the cloud assimilation (case ‘analytical’ and ‘UAHPAR’), the ozone performance is 

systematically better than that of the base case by decreasing the mean bias from 2.8% to 2.4%, 
the RMSE from 14.5 ppbV to 14.2 ppbV, and the NMB from 18.2% to 17.0%. No significant 
difference was observed in model performance (for ozone) for case ‘UAHPAR’ compared with 
case ‘analytical’, at least for the present results. Examining the results for each sub-region, the 
DFW region has the best performance in terms of having the combined high R values (0.75-0.77) 
and lower NME values (28.9%-30.6%). The model performed better over the HGB region with 
respect to correlation coefficient (R=0.78) but overestimated mean ozone concentration by 7.5-
7.8 ppbV. On average, the model underestimated mean ozone over Austin, DFW, East Texas 
and El Paso region, while overestimating mean ozone over Corpus Christi, HGB and San Antonio 
region. The Corpus Christi shows the highest NMB of 105-111% compared to the observations.  

 
The poor performance for ozone simulation in Corpus Christi may be caused by the 

combined effect of poor marine boundary condition representation in the model, missing 
halogen chemistry in current CMAQ configuration and missing/incorrect emissions sources.  
Figure 51 shows the spatial map of statistic metrics R and NMB for all 38 TCEQ CAMS sites 
during the 15 days simulation period. Similar to the tabulated information, along the coastal 
areas model performs poorly. The cases ‘analytical’ and ‘UAHPAR’ significantly improve the 
model overestimation in sites near San Antonio region and northern suburbs near HGB region.  
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Figure 51. Performance of CMAQ hourly ozone from simulation case ‘cntrl’ (left) and ‘analytical’ (middle) as 

well as UAH insolation retrievals  (right) at TCEQ sites. The upper panel shows the correlation 
coefficient (R) and the lower panel shows the normalize mean bias (NMB). 

 
For isoprene, the model results were compared to measurements from 18 TCEQ sites and 

the statistics are summarized in Table 15. CMAQ performance for ISOP was particularly poor, 
with the typical R value from 0.36-0.40. The current model configuration significantly 
overestimates the isoprene concentration by a factor of 2.3-3.1 (the observation mean value 
during the simulation period is 0.23 ppbV while the simulation value is 0.47-0.61 ppbV). 

 
Table 15. Statistics for model isoprene predictions for three cases over 18 TCEQ CAMS sites. 

Case OBS_AVE SIM_AVE IA R RMSE MB MAGE NMB NME 
  (ppbV) (ppbV)     (ppbV) (ppbV) (ppbV) (%) (%) 

cntrl 0.23 0.59 0.37 0.36 0.69 0.39 0.49 292 326 
analytical 0.23 0.61 0.37 0.37 0.72 0.42 0.51 311 342 
UAHPAR 0.23 0.47 0.41 0.40 0.69 0.29 0.41 225 271 

 
 Even though the case ‘UAHPAR’, which introduces a more accurate PAR input, moves the 

model in the right direction, correcting model PAR error is not enough to correct this large 
model bias. Figure 52 shows the time series of predicted isoprene concentration from different 
CMAQ runs against observations at three individual sites. For site CAMS 26, which is located at 
the northern suburb of HBG region, the simulated ISOP concentration for most days are 2-3 
times higher than the observed value for the all three cases (peak value 3.5 ppbV versus 1 
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ppbV). Case ‘PARUAH’ shows improvement during the second half of simulation period (i.e. the 
red line for Sep 10-15, 2013), but improvements are not consistent.  

 

 

 

 
Figure 52. Time series comparison of ISOP concentration simulation for different CMAQ cases at site CAMS 26 

(top), CAMS 1007 (middle) and CAMS 69 (bottom). 
 
The model performance for case ‘PARUAH’ at some sites near the DFW region, as shown for 

CAMS1007  and CAMS69, are much better than the case ‘cntrl’ or ‘analytical’ in terms of 
replicating the magnitude of observation (especially during Sep 4-7, 2013 at site CAMS69). 
However, the model shows a diurnal pattern peaking during morning hours but suddenly 
dropping during afternoons on some days, which does not agree with observed pattern.  The 
isoprene simulation results presented here are also consistent with other investigations 
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(personal communication) for similar AQRP projects (e.g. AECOM results testing the sensitivity 
of different mechanisms to changes in BVOC emission estimates, UT Austin results testing the 
impact of different land use on BVOC emission estimates). This suggests that the 2011 global 
BVOC emission factors used in the current MEGAN release 
(http://lar.wsu.edu/megan/docs/GlobalEmissionFactor/), at least for isoprene, may have high 
uncertainty over the study domain. Alex Guenther’s group has been contacted to request the 
latest BVOC emission factors for further tests. 

 

7. CONCLUSIONS AND RECOMMENDATIONS 
This project took advantage of UAH’s GOES insolation and cloud retrieval products to test 

the sensitivity of air quality simulations over Texas to BVOC emission estimates during the 2013 
DISCOVER-AQ Houston campaign period by using the WRF-MEGAN-CMAQ modeling platform.  

 
Compared with the ground pyranometer observations, satellite-retrieved PAR/insolation 

values tend to systematically correct the radiation overestimation problem in WRF, which is 
probably due to the model’s inability to create clouds at correct location and time. This 
conclusion holds for all the evaluations conducted in this project against different networks (i.e. 
SURFRAD, SCAN and Texas local broadband radiation monitoring stations) and during different 
time periods (i.e. August 2006 and August-September 2013).  Therefore, radiation information 
retrieved from satellite data is highly recommended to drive biogenic emission models. The 
UAH PAR products were also compared with another set of discontinued satellite retrieval 
products from UMD and the results show comparable statistical performance in terms of 
correlation and bias. However, the UAH PAR has much finer spatial texture than UMD PAR due 
to the higher resolution (4km). 

 
In addition to the control WRF simulation, WRF simulations using the UAH satellite cloud 

assimilation technique were also performed. The results from these simulations (called 
‘analytical’ in this report) were also used in BVOC emission estimates to quantify the impact of 
improved model cloud simulation. The results were independently evaluated with respect to 
cloud observations, surface radiation observations, and standard surface meteorological 
observations. The results from these simulations indicated significant improvements with 
respect to all the metrics used in the evaluation (ref. Chapter 4). While the use of observed 
satellite-based PAR is still advantageous over model data, the improvements achieved from 
cloud assimilation will have a broader impact on the air quality simulations as having better 
model cloud field impacts temperature, moisture, boundary layer development, and the 
transport of pollutants. 

 
Three sets of MEGAN simulations over the TCEQ SIP modeling domains (D1 for the CONUS 

36km domain, D2 for the Texas 12km domain and D3 for the East Texas 4km domain) were 
conducted during August and September 2013 by using different PAR inputs, namely PAR from 
the control WRF run (cntrl), PAR from WRF cloud assimilation run (analytical), and PAR from the 
GOES satellite retrieval using the new algorithm developed by UAH (UAH). Those results were 

http://lar.wsu.edu/megan/docs/GlobalEmissionFactor/
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further analyzed to show the spatial heterogeneity over the Texas domain with respect to 
isoprene (ISOP) and monoterpene (TERP) emissions. For the ‘UAH’ case, the estimated ISOP 
emission rate by MEGAN is about 30% less than the ‘cntrl’ case and the estimated TERP 
emission rate is about 5% less than the ‘cntrl’. With respect to spatial heterogeneity, the region 
most impacted in terms of reductions in the magnitude of concentrations is East Texas. The 
Trans-Pecos region of Texas (far west Texas, west of the Pecos River) was impacted most in 
terms of percentage. The significant differences show the importance of using observed 
cloud/insolation data for BVOC emission estimates used for SIP modeling activities. 

 
A stand-alone version of the soil NO emissions model using the BDSNP scheme was 

developed in this project. The stand-alone model facilitates the ease of cross-platform 
implementation for air quality modeling (e.g., use in both CMAQ and CAMx). For the stand-
alone BDSNP version, the soil NO emissions estimation process does not undergo the 
atmospheric chemistry calculation, therefore it saves more than 90% of CPU time compared 
with the standard air quality modeling. Furthermore, a new soil biome spatial map based on 
finer resolution land cover data and climate zone classification over the continental U.S. 
(CONUS) was also developed. The new map links with published estimates for biome-specific 
base emission rates to produce more detailed NO emission estimates. The spatial pattern of 
this new soil biome map matches with the latest CONUS land cover GSI database from the 
USGS and has much finer textural representations. The new map better represents the biome 
types such as grasslands, evergreen broadleaf forest, and cropland. The soil emission rates 
estimated by the BDSNP module are 14-21% higher than the results estimated by the YL95 
algorithm but with quite different spatial patterns, which are determined by different soil 
biome map inputs, different soil temperature-moisture response curves, and different pulsing 
factor parameterizations. For future implementation, the soil biome base emission factors in 
the BDSNP model with the values derived from the measurements over specific North 
American sites is highly recommended since they better reflect the local soil characteristics. 

 
Three sets of 15-day (Sep 1-15, 2013) CMAQ simulations were conducted to demonstrate 

the quantitative impact of cloud assimilation and biogenic emissions on ozone formation over 
Texas.  The results did not show a significant difference with respect to ozone simulation. 
Compared to observations from 38 CAMS sites over Texas, mean correlation coefficient for all 
three cases were around 0.75-0.76. On the average, the model overestimated mean ozone 
concentration by 2.4-2.8 ppb. By using satellite data, the ozone performance was systematically 
better than that of the base case by decreasing the mean bias from 2.8% to 2.4%, the RMSE 
from 14.5 ppbV to 14.2 ppbV, and the NMB from 18.2% to 17.0%. On average, the model 
underestimated mean ozone over Austin, DFW, East Texas and El Paso region, while 
overestimating mean ozone over Corpus Christi, HGB and San Antonio region. The simulated 
ozone for Corpus Christi exhibited the highest NMB of 105-111% compared to the observations. 
The predicted highest simulated maximum daily 8-hr average ozone concentrations (MDA8 O3) 
were near Dallas-Fort Worth with values greater than 65 ppbV. The typical model MDA8 O3 
value over Houston area were about 50-55 ppbV. By using the BVOC emission estimates using 
UAH PAR, the simulated MDA8 O3 values on the average were reduced by about 3-7 ppbV. 
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Overall, the model overestimated isoprene concentrations by a factor of 2-3. While using 
satellite data reduced isoprene emissions by about 30%, most of the modeling domain over 
east Texas remained saturated with BVOC. Therefore, the improvements to ozone prediction 
using satellite data were marginal over east Texas. These simulations should be repeated using 
a biogenic emission model that better represents clear sky emission estimates so that the 
impact of using satellite data can be fully realized. 

 

8. AUDITS OF DATA QUALITY  
This project has produced new data sets and has used many established data sources for 

validation. The observations used in the evaluation work have been rigorously audited for 
quality by the organizations releasing the data. All data used in the evaluation work here have 
gone through a secondary quality control for quality assurance by the investigators in this 
project before being used in the evaluation. These checks included performing statistical 
analysis on the data to ensure that the data are within the allowable range and to omit any 
anomalous datum. 

 
The main data produced under this project is the satellite-based photosynthetically active 

radiation (PAR).  As described in Chapters 2 and 3, the data produced for 2013 have gone 
through several iterations and the final product was thoroughly evaluated. The final data will be 
delivered along with the final report. The size of GOES retrievals including PAR for the months 
of August and September 2013 is about 8.54 GB. 

 
For the biogenic VOC emissions from MEGAN, the data were evaluated and exhibited a 

large over-estimation. However, the data is ready to be shared with other investigators. The 
total disk storage of the two months MEGAN runs is 2.9 GB for CONUS domain, 5.4 GB for 
domain 2 and 16.8 GB for domain 3. It can be used in CAMx simulations by using the 
CMAQ2CAMx interface program provided by Ramboll-Environ, 
http://www.camx.com/getmedia/a9e648b7-2b2d-487d-9243-2f363a6feea4/cmaq2camx-
4sep13.tgz.aspx). 

 
Another component of this project was the development of the stand-alone Berkeley-

Dalhousie soil NO parameterization scheme (BDSNP). This model and associated data also will 
be delivered alongside this final report. A user’s manual that documents in detail the model 
structure and how to install and operate it for specific applications is also provided.  The 
manual as well as the tested benchmark case and the 4km resolution soil biome map will be 
provided as part of final delivery. The data have been completely audited for quality. The 
statistics about the data was provided in Chapter 5. In total 828Mb data were generated for soil 
emission estimates for two test cases covering two-month simulations by BDSNP module 
(196Mb for D1, 192Mb for D2, and 540Mb for D3). The results are archived individually and 
compared with the soil NO estimation from the YL95 algorithm in MEGAN and will be delivered 
to TCEQ for further testing. 
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All inputs for WRF simulations were checked for quality prior to model simulations. WRF 
outputs were also evaluated as described in Chapter 4. The anthropogenic emissions data used 
in CMAQ simulations were provided by TCEQ and went through a secondary quality check 
before their use in CMAQ simulations. All other model inputs were also checked for their 
accuracy. The CMAQ air quality outputs were evaluated as described in Chapter 6. 

 

9.  PAPERS AND PRESENTATIONS 
The results from this project have been presented in several scientific conferences, 

including CMAS, AMS, AWMA and AGU. Currently, there are two papers under preparation to 
be submitted to peer-reviewed journals for publication. Below, is the listing of the papers and 
presentations related to this project: 
 

1. Rui Zhang, Daniel S. Cohan, Arastoo Pour Biazar, and Erin Chavez-Figueroa. Probing the 
impact of biogenic emission estimates on air quality modeling using satellite 
Photosynthetically Active Radiation (PAR), the 13th CMAS conference, Oct 27-29, 2014, 
Chapel Hill, NC. 

2. Rui Zhang, Daniel S. Cohan, Andrew White, Arastoo Pour Biazar, and Richard Mcnider. 
Incorporating Geostationary Operational Environmental Satellite (GOES) Insolation and 
Cloud Retrievals to Improve Biogenic Emission Estimates in Texas, the 14th CMAS 
conference, Oct 5-7, 2015, Chapel Hill, NC. 

3. Rui Zhang, Daniel S. Cohan, Andrew White, Arastoo Pour Biazar, and Richard Mcnider. 
Incorporating GOES satellite photosynthetically active radiation (PAR) retrievals to 
improve biogenic emission estimates over Southern United States and Texas. 
Atmospheric Environment, 2015 (under preparation). 

4. Arastoo Pour Biazar, Andrew White, Rui Zhang, Daniel Cohan, Richard T. McNider, Bright 
Dornblaser, Mark Estes. Use of Satellite Observations for Improved Air Pollution 
Exposure Estimates. The 95th AMS Annual Meeting, Phoenix, AZ, 4-8 January 2015. 

5. Arastoo Pour-Biazar, Andrew White, Rui Zhang, Richard T. McNider, Dan Cohan, Mark 
Estes, Bright Dornblaser. Use of Satellite Cloud Observations for Improved Biogenic 
Emissions, A&WMA’s 108th Annual Conference & Exhibition, June 22-25, 2015, Raleigh, 
NC. 

6. Arastoo Pour-Biazar, Andrew White, Rui Zhang, Dan Cohan, Richard T. McNider, Mark 
Estes, Bright Dornblaser. Estimating photosynthetically active radiation (PAR) from 
geostationary satellite observations. Atmospheric Environment, 2015 (under 
preparation). 
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APPENDIX A: DEFINITIONS OF EVALUATION METRICS USED IN THIS 
STUDY 

 
Given the simulated time series iM and the paired observation time series iO  with available 

and validate N samples at same location (or the nearest location), the following definition of 

statistics are used in this study for model evaluation: 

 

Group I. Agreement and Correlation 

 

Index of Agreement (IOA): 
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IOA is monotonically increasing linear index with the range of [0 1] to indicate the extent of 

agreement from null (‘0’) to absolute the same (‘1’). 

 

Correlation Coefficient (R): 
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R is in the range of [-1 1] with the positive unity implying perfect correlation, the negative unity 

implying opposite correlation, and zero implying apparently no correlation. 

 

Group II. Difference 

 

Mean Bias (MB): 
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MB is a non-symmetric metric with the same unit as observation. Positive or negative value is 

corresponding with overestimation and underestimation. The range for MB is ],[ +∞−O . 

  

Mean Absolute Gross Error (MAGE): 
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MAGE is also a non-symmetric metric with the same unit as observation. The value is positive 

defined. The range for MAGE is ],0[ +∞ .  

 

Root Mean Square Error (RMSE): 
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RMSE measures the overall deviation of simulations from the trend of observation. It is also a 

non-symmetric metric with the unit same as the evaluated variable. The value is positive 

defined. The range for RMSE is ],0[ +∞   

 

Group III. Relative difference 

 

Normalized Mean Bias (NMB): 
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NME is relative mean error normalized by mean observation. The range is ]%,100[ +∞− . 

 

Normalized Mean Error (NME): 
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NME is relative mean error normalized by mean observation. The range is  ]%,0[ +∞  
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APPENDIX B: STASTICS FOR INSOLATION SIMULATION/RETREIVAL 
FOR DIFFERENT CASES AT 47 TCEQ NETWORK 
SITES 

1.  Statistics for case ‘WRF cntrl’ 

SITE OBS_AVE SIM_AVE IA R RMSE MB MAGE NMB NME
(W/m2) (W/m2) (W/m2) (W/m2) (W/m2) (%) (%)

C02 219.1 256.7 0.92 0.87 166.5 36.9 88.5 16.9 40.4
C04 250.4 283.4 0.96 0.93 135.9 33.0 72.8 13.2 29.1
C08 218.1 248.3 0.93 0.87 156.0 27.0 82.7 12.4 37.9
C09 228.4 250 0.93 0.87 158.3 21.6 83.0 9.4 36.3
C12 246.4 246.3 0.93 0.88 159.7 -0.1 92.6 -0.1 37.6
C13 268.5 270.8 0.97 0.94 119.6 1.8 60.1 0.7 22.4
C15 226.2 262.1 0.93 0.89 158.2 36.0 77.8 15.9 34.4
C17 279.7 271.3 0.97 0.94 122.2 -8.3 55.8 -3.0 19.9
C19 255.3 256.5 0.95 0.91 139.3 1.2 74.2 0.5 29.1
C26 268 231.1 0.93 0.87 168.9 -36.9 87.9 -13.8 32.8
C28 210.6 259.2 0.88 0.83 197.5 48.7 106.6 23.1 50.6
C31 260.4 282.8 0.97 0.95 108.1 22.5 56.4 8.6 21.7
C35 224.3 262.1 0.93 0.89 157.7 38.9 82.3 17.4 36.7
C37 260.7 246.3 0.93 0.86 173.0 -14.4 95.0 -5.5 36.4
C38 261.9 273.3 0.96 0.93 123.9 11.5 66.9 4.4 25.6
C41 262.6 246.3 0.94 0.88 160.7 -16.3 89.3 -6.2 34.0
C43 256.9 255.9 0.95 0.91 144.0 -0.9 73.2 -0.4 28.5
C45 243.5 264.1 0.94 0.88 159.4 20.6 76.7 8.5 31.5
C52 249.4 266.4 0.96 0.92 134.1 17.0 72.9 6.8 29.2
C53 221.4 248.3 0.92 0.86 165.7 26.8 91.5 12.1 41.3
C56 246.2 278.6 0.95 0.93 134.9 32.4 70.2 13.1 28.5
C58 242.3 262.4 0.95 0.92 135.6 16.5 78.3 6.8 32.3
C61 256.9 270.8 0.96 0.93 122.4 13.9 65.5 5.4 25.5
C63 264.5 282.8 0.98 0.96 101.0 18.4 53.2 6.9 20.1
C64 224.3 265.3 0.92 0.88 169.7 41.0 87.4 18.3 39.0
C69 250.2 284.6 0.97 0.96 109.6 33.6 57.3 13.4 22.9
C70 272.4 271.3 0.96 0.93 128.2 -1.0 59.8 -0.4 22.0
C71 270.6 270.6 0.97 0.94 121.4 0.0 61.6 0.0 22.8
C73 252.8 257.7 0.94 0.90 147.1 4.9 75.7 1.9 29.9
C75 276.7 278.4 0.96 0.93 128.3 4.0 60.1 1.4 21.7
C76 261.5 283.6 0.96 0.93 128.8 22.1 65.4 8.5 25.0
C77 265.5 266.4 0.97 0.93 123.6 0.9 61.6 0.3 23.2
C78 243.8 258.3 0.96 0.93 120.4 13.6 66.1 5.6 27.1
C80 255.4 262.5 0.93 0.87 166.7 7.2 81.8 2.8 32.0
C82 263.2 286.3 0.97 0.94 117.5 22.3 60.1 8.5 22.9
C85 231.8 275.2 0.94 0.92 144.8 41.8 78.2 18.0 33.7
C87 243.9 265.3 0.95 0.91 141.8 21.5 78.3 8.8 32.1

C401 269.6 273.6 0.97 0.94 120.5 3.9 59.7 1.5 22.1
C403 213.4 248.3 0.92 0.86 167.2 34.9 89.6 16.3 42.0
C416 216.7 248.3 0.92 0.87 159.0 31.6 88.3 14.6 40.7
C559 239.1 253 0.94 0.89 146.4 13.8 76.3 5.8 31.9
C643 216.3 250 0.92 0.88 159.8 33.7 85.1 15.6 39.3
C1006 248.7 267.7 0.96 0.94 120.6 19.0 64.9 7.6 26.1
C1015 205.2 262.1 0.90 0.85 183.0 56.9 94.6 27.7 46.1
C1016 236.5 254.2 0.93 0.87 163.6 17.7 83.8 7.5 35.4
C1032 251.9 279 0.96 0.93 134.0 27.1 67.3 10.7 26.7
C1035 354.3 250 0.99 0.98 84.1 15.6 56.0 4.4 15.8  
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Note: IA-index of agreement, R-correlation coefficient, RMSE-root mean square error, MB-mean bias, 
MAGE-mean aggregate gross error, NMB-normalized mean bias, and NME-normalized mean error. 
 
2.  Statistics for case ‘WRF analytical’ 

SITE OBS_AVE SIM_AVE IA R RMSE MB MAGE NMB NME
(W/m2) (W/m2) (W/m2) (W/m2) (W/m2) (%) (%)

C02 219.1 267.9 0.93 0.89 164.4 48.5 84.8 22.1 38.7
C04 250.4 271 0.95 0.92 136.7 20.6 73.4 8.2 29.3
C08 218.1 263.1 0.94 0.91 145.1 43.1 78.5 19.8 36.0
C09 228.4 268.3 0.94 0.90 154.0 39.9 80.1 17.5 35.1
C12 246.4 240 0.92 0.86 165.6 -6.4 98.2 -2.6 39.8
C13 268.5 270.6 0.97 0.94 116.1 0.6 58.2 0.2 21.7
C15 226.2 268.9 0.94 0.90 152.5 42.7 77.0 18.9 34.1
C17 279.7 265.8 0.96 0.92 138.1 -13.9 62.7 -5.0 22.4
C19 255.3 262.9 0.95 0.90 147.1 7.6 74.8 3.0 29.3
C26 268 247 0.94 0.88 159.6 -21.0 80.1 -7.9 29.9
C28 210.6 265.3 0.91 0.88 179.5 54.7 93.6 26.0 44.4
C31 260.4 279.4 0.97 0.94 122.8 19.1 62.5 7.3 24.0
C35 224.3 268.9 0.94 0.91 148.6 45.7 78.1 20.4 34.8
C37 260.7 240 0.92 0.85 175.9 -20.7 99.5 -7.9 38.2
C38 261.9 249 0.95 0.90 144.1 -12.8 76.4 -4.9 29.2
C41 262.6 240 0.93 0.87 166.3 -22.6 94.4 -8.6 35.9
C43 256.9 252.3 0.95 0.90 144.2 -4.6 71.7 -1.8 27.9
C45 243.5 280.1 0.95 0.92 143.5 36.5 66.9 15.0 27.5
C52 249.4 275.3 0.96 0.93 130.6 25.8 70.2 10.4 28.1
C53 221.4 263.1 0.94 0.90 151.8 41.6 84.7 18.8 38.2
C56 246.2 273.3 0.95 0.92 143.3 27.1 74.7 11.0 30.3
C58 242.3 240.1 0.94 0.88 151.4 -5.9 82.3 -2.5 34.0
C61 256.9 270.6 0.96 0.93 125.2 13.8 65.7 5.4 25.6
C63 264.5 279.4 0.97 0.95 115.4 15.0 58.6 5.7 22.2
C64 224.3 267.6 0.93 0.90 158.4 43.4 81.6 19.3 36.4
C69 250.2 282.8 0.96 0.93 130.1 31.8 66.4 12.7 26.5
C70 272.4 265.8 0.95 0.91 143.0 -6.6 64.9 -2.4 23.8
C71 270.6 277 0.96 0.93 129.1 6.4 63.4 2.4 23.4
C73 252.8 260.8 0.95 0.91 141.4 8.0 74.2 3.2 29.4
C75 276.7 267.5 0.95 0.91 147.1 -7.0 68.3 -2.5 24.7
C76 261.5 270.3 0.95 0.91 142.7 8.8 70.6 3.4 27.0
C77 265.5 270 0.97 0.94 116.4 4.5 58.4 1.7 22.0
C78 243.8 251.7 0.95 0.90 139.6 7.3 74.9 3.0 30.7
C80 255.4 279.2 0.95 0.91 145.2 23.8 72.3 9.3 28.3
C82 263.2 283 0.96 0.92 134.6 18.9 65.8 7.2 25.0
C85 231.8 276.6 0.94 0.92 143.3 43.2 77.1 18.6 33.3
C87 243.9 269.8 0.94 0.90 146.5 26.0 78.4 10.7 32.2

C401 269.6 277 0.96 0.93 125.3 7.3 61.4 2.7 22.8
C403 213.4 263.1 0.93 0.90 154.2 49.7 82.2 23.3 38.5
C416 216.7 263.1 0.93 0.90 150.9 46.4 84.4 21.4 38.9
C559 239.1 258.4 0.95 0.91 137.7 19.3 74.5 8.1 31.2
C643 216.3 268.3 0.93 0.90 162.5 52.1 87.4 24.1 40.4
C1006 248.7 272.6 0.95 0.90 147.7 23.9 76.7 9.6 30.8
C1015 205.2 268.9 0.91 0.87 179.8 63.6 94.0 31.0 45.8
C1016 236.5 289.9 0.94 0.92 152.5 53.4 75.9 22.6 32.1
C1032 251.9 287.5 0.96 0.93 131.1 35.6 67.1 14.1 26.6
C1035 354.3 268.3 0.99 0.98 84.4 18.7 54.0 5.3 15.3  
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Note: IA-index of agreement, R-correlation coefficient, RMSE-root mean square error, MB-mean bias, 
MAGE-mean aggregate gross error, NMB-normalized mean bias, and NME-normalized mean error. 
 
 
3.  Statistics for case ‘UAH statellite’ 

SITE OBS_AVE SIM_AVE IA R RMSE MB MAGE NMB NME
(W/m2) (W/m2) (W/m2) (W/m2) (W/m2) (%) (%)

C02 219.1 289.7 0.95 0.96 133.3 69.2 80.4 31.6 36.7
C04 250.4 309.3 0.95 0.94 144.8 58.9 79.6 23.5 31.8
C08 218.1 289.9 0.95 0.95 139.5 66.5 83.3 30.5 38.2
C09 228.4 289.9 0.96 0.95 135.4 61.0 77.6 26.6 33.9
C12 246.4 291 0.94 0.91 157.7 43.9 92.8 17.8 37.6
C13 268.5 310.2 0.98 0.97 99.0 42.5 55.8 15.8 20.8
C15 226.2 287.2 0.95 0.94 138.2 61.2 78.3 27.0 34.6
C17 279.7 309.7 0.98 0.98 88.2 30.0 47.9 10.7 17.1
C19 255.3 307.3 0.97 0.97 113.7 52.0 67.7 20.4 26.5
C26 268 295.6 0.98 0.96 102.7 27.7 51.4 10.3 19.2
C28 210.6 285.9 0.94 0.94 151.9 75.4 87.0 35.8 41.4
C31 260.4 308.7 0.98 0.97 102.2 48.3 62.1 18.6 23.9
C35 224.3 290.8 0.96 0.96 131.5 67.7 80.8 30.2 36.0
C37 260.7 291.8 0.95 0.91 153.6 30.5 86.0 11.7 32.9
C38 261.9 303 0.97 0.96 109.3 41.2 61.7 15.7 23.6
C41 262.6 291.9 0.95 0.92 146.5 28.8 83.3 10.9 31.7
C43 256.9 302.5 0.96 0.95 128.3 45.7 69.1 17.8 26.9
C45 243.5 295.6 0.97 0.97 112.6 51.5 65.3 21.1 26.7
C52 249.4 309.8 0.97 0.97 121.9 60.5 72.9 24.3 29.3
C53 221.4 288.3 0.95 0.95 135.0 67.0 81.0 30.3 36.6
C56 246.2 306.5 0.96 0.96 132.4 60.4 74.6 24.5 30.3
C58 242.3 306.9 0.96 0.96 130.0 61.0 77.7 25.2 32.1
C61 256.9 302.6 0.98 0.97 103.0 45.8 62.3 17.8 24.3
C63 264.5 307.4 0.98 0.98 98.8 43.0 59.2 16.3 22.4
C64 224.3 286.9 0.96 0.96 122.9 62.7 74.4 27.9 33.2
C69 250.2 306.1 0.97 0.96 119.3 55.2 69.6 22.0 27.8
C70 272.4 303.9 0.98 0.97 97.6 31.5 50.7 11.6 18.6
C71 270.6 309 0.98 0.97 97.0 38.4 58.5 14.2 21.6
C73 252.8 311.8 0.97 0.97 120.8 59.1 71.9 23.4 28.4
C75 276.7 308.5 0.98 0.97 99.9 34.5 52.8 12.5 19.1
C76 261.5 301.1 0.98 0.97 97.8 39.8 57.8 15.2 22.1
C77 265.5 309.5 0.98 0.98 97.8 44.0 59.4 16.6 22.4
C78 243.8 304.4 0.97 0.96 122.2 59.2 73.9 24.3 30.3
C80 255.4 303.7 0.96 0.94 131.5 48.4 71.3 19.0 27.9
C82 263.2 305.3 0.98 0.97 102.3 42.8 59.1 16.3 22.5
C85 231.8 302 0.96 0.97 132.1 69.7 80.9 30.1 34.9
C87 243.9 303.5 0.96 0.96 125.1 59.8 75.4 24.5 30.9

C401 269.6 308.8 0.98 0.97 96.7 39.2 55.2 14.5 20.5
C403 213.4 288.9 0.94 0.94 151.4 75.6 90.6 35.4 42.5
C416 216.7 294.9 0.94 0.95 150.5 78.3 92.5 36.2 42.7
C559 239.1 295.5 0.96 0.96 122.9 56.3 70.9 23.5 29.6
C643 216.3 290.2 0.95 0.96 139.7 73.5 86.5 33.9 39.9
C1006 248.7 301.8 0.97 0.97 116.4 53.1 68.5 21.3 27.6
C1015 205.2 292.5 0.92 0.91 177.8 87.3 100.0 42.6 48.7
C1016 236.5 292.1 0.96 0.94 134.7 55.7 75.0 23.6 31.7
C1032 251.9 307 0.97 0.96 117.8 54.4 69.6 21.5 27.6
C1035 354.3 289.8 0.98 0.99 108.6 73.7 74.3 20.6 20.8  
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Note: IA-index of agreement, R-correlation coefficient, RMSE-root mean square error, MB-mean bias, 
MAGE-mean aggregate gross error, NMB-normalized mean bias, and NME-normalized mean error. 
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